
Live Systems Manual

Live Systems Project <debian-live@lists.debian.org>

Copyright © 2006-2014 Live Systems Project
This program is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation, either version
3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be use-
ful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTIC-
ULAR PURPOSE. See the GNU General Public License for
more details.

You should have received a copy of the GNU Gen-
eral Public License along with this program. If not, see
‹http://www.gnu.org/licenses/›.

The complete text of the GNU General Public License
can be found in /usr/share/common-licenses/GPL-3 file.

ii

http://www.gnu.org/licenses/

Contents

Contents

About 2

About this manual 3

1. About this manual 3
1.1 For the impatient 3
1.2 Terms . 3
1.3 Authors . 4
1.4 Contributing to this document 5

1.4.1 Applying changes 5
1.4.2 Translation 5

About the Live Systems Project 7

2. About the Live Systems Project 7
2.1 Motivation . 7

2.1.1 What is wrong with current live systems . 7
2.1.2 Why create our own live system? 7

2.2 Philosophy . 7
2.2.1 Only unchanged packages from Debian

“main” 7
2.2.2 No package configuration of the live sys-

tem . 7
2.3 Contact . 8

User 9

Installation 10

3. Installation 10
3.1 Requirements . 10
3.2 Installing live-build 10

3.2.1 From the Debian repository 10
3.2.2 From source 10
3.2.3 From `snapshots' 11

3.3 Installing live-boot and live-config 11
3.3.1 From the Debian repository 11
3.3.2 From source 11
3.3.3 From `snapshots' 12

The basics 13

4. The basics 13
4.1 What is a live system? 13
4.2 Downloading prebuilt images 13
4.3 Using the web live image builder 14

4.3.1 Web builder usage and caveats 14
4.4 First steps: building an ISO hybrid image 14
4.5 Using an ISO hybrid live image 15

4.5.1 Burning an ISO image to a physical
medium 15

4.5.2 Copying an ISO hybrid image to a USB
stick . 15

4.5.3 Using the space left on a USB stick 15
4.5.4 Booting the live medium 16

4.6 Using a virtual machine for testing 16
4.6.1 Testing an ISO image with QEMU 17
4.6.2 Testing an ISO image with VirtualBox . . . 17

4.7 Building and using an HDD image 17
4.8 Building a netboot image 18

4.8.1 DHCP server 19

iii

Contents

4.8.2 TFTP server 19
4.8.3 NFS server 20
4.8.4 Netboot testing HowTo 20
4.8.5 Qemu . 20

4.9 Webbooting . 20
4.9.1 Getting the webboot files 20
4.9.2 Booting webboot images 21

Overview of tools 22

5. Overview of tools 22
5.1 The live-build package 22

5.1.1 The lb config command 22
5.1.2 The lb build command 23
5.1.3 The lb clean command 23

5.2 The live-boot package 23
5.3 The live-config package 23

Managing a configuration 24

6. Managing a configuration 24
6.1 Dealing with configuration changes 24

6.1.1 Why use auto scripts? What do they do? 24
6.1.2 Use example auto scripts 24

6.2 Clone a configuration published via Git 25

Customizing contents 26

7. Customization overview 26
7.1 Build time vs. boot time configuration 26
7.2 Stages of the build 26
7.3 Supplement lb config with files 26

7.4 Customization tasks 27

Customizing package installation 28

8. Customizing package installation 28
8.1 Package sources 28

8.1.1 Distribution, archive areas and mode . . . 28
8.1.2 Distribution mirrors 29
8.1.3 Distribution mirrors used at build time . . 29
8.1.4 Distribution mirrors used at run time . . . 29
8.1.5 Additional repositories 29

8.2 Choosing packages to install 30
8.2.1 Package lists 30
8.2.2 Using metapackages 30
8.2.3 Local package lists 31
8.2.4 Local binary package lists 31
8.2.5 Generated package lists 31
8.2.6 Using conditionals inside package lists . . 31
8.2.7 Removing packages at install time 32
8.2.8 Desktop and language tasks 32
8.2.9 Kernel flavour and version 33
8.2.10 Custom kernels 33

8.3 Installing modified or third-party packages 34
8.3.1 Using packages.chroot to install custom

packages 34
8.3.2 Using an APT repository to install custom

packages 34
8.3.3 Custom packages and APT 34

8.4 Configuring APT at build time 35
8.4.1 Choosing apt or aptitude 35
8.4.2 Using a proxy with APT 35
8.4.3 Tweaking APT to save space 35
8.4.4 Passing options to apt or aptitude 36
8.4.5 APT pinning 36

iv

Contents

Customizing contents 38

9. Customizing contents 38
9.1 Includes . 38

9.1.1 Live/chroot local includes 38
9.1.2 Binary local includes 38

9.2 Hooks . 39
9.2.1 Live/chroot local hooks 39
9.2.2 Boot-time hooks 39
9.2.3 Binary local hooks 39

9.3 Preseeding Debconf questions 39

Customizing run time behaviours 40

10. Customizing run time behaviours 40
10.1 Customizing the live user 40
10.2 Customizing locale and language 40
10.3 Persistence . 41

10.3.1 The persistence.conf file 43
10.3.2 Using more than one persistence store . 43

10.4 Using persistence with encryption 44

Customizing the binary image 46

11. Customizing the binary image 46
11.1 Bootloaders . 46
11.2 ISO metadata 46

Customizing Debian Installer 47

12. Customizing Debian Installer 47
12.1 Types of Debian Installer 47
12.2 Customizing Debian Installer by preseeding . . 48

12.3 Customizing Debian Installer content 48

Project 49

Contributing to the project 50

13. Contributing to the project 50
13.1 Making changes 50

Reporting bugs 52

14. Reporting bugs 52
14.1 Known issues 52
14.2 Rebuild from scratch 52
14.3 Use up-to-date packages 52
14.4 Collect information 52
14.5 Isolate the failing case if possible 53
14.6 Use the correct package to report the bug against 53

14.6.1 At build time while bootstrapping 53
14.6.2 At build time while installing packages . 54
14.6.3 At boot time 54
14.6.4 At run time 54

14.7 Do the research 54
14.8 Where to report bugs 54

Coding Style 56

15. Coding Style 56
15.1 Compatibility . 56
15.2 Indenting . 56
15.3 Wrapping . 56
15.4 Variables . 56

v

Contents

15.5 Miscellaneous 57

Procedures 58

16. Procedures 58
16.1 Major Releases 58
16.2 Point Releases 58

16.2.1 Last Point Release of a Debian Release 58
16.2.2 Point release announcement template . 58

Git repositories 60

17. Git repositories 60
17.1 Handling multiple repositories 60

Examples 62

Examples 63

18. Examples 63
18.1 Using the examples 63
18.2 Tutorial 1: A default image 63
18.3 Tutorial 2: A web browser utility 63
18.4 Tutorial 3: A personalized image 64

18.4.1 First revision 64
18.4.2 Second revision 65

18.5 A VNC Kiosk Client 66
18.6 A base image for a 128MB USB key 67
18.7 A localized GNOME desktop and installer . . . 67

Appendix 69

Style guide 70

19. Style guide 70
19.1 Guidelines for authors 70

19.1.1 Linguistic features 70
19.1.2 Procedures 71

19.2 Guidelines for translators 73
19.2.1 Translation hints 73

SiSU Metadata, document information 75

vi

Contents

Live Systems Manual1

1

Contents

About2

2

Live Systems Manual

About this manual3

1. About this manual4

This manual serves as a single access point to all documen-5

tation related to the Live Systems Project and in particular ap-
plies to the software produced by the project for the Debian 8.0
“jessie ” release. An up-to-date version can always be found
at ‹http://live-systems.org/›

While live-manual is primarily focused on helping you build a6

live system and not on end-user topics, an end-user may find
some useful information in these sections: ‹The Basics› cov-
ers downloading prebuilt images and preparing images to be
booted from media or the network, either using the web builder
or running live-build directly on your system. ‹Customizing run
time behaviours› describes some options that may be specified
at the boot prompt, such as selecting a keyboard layout and
locale, and using persistence.

Some of the commandsmentioned in the text must be executed7

with superuser privileges which can be obtained by becoming
the root user via su or by using sudo. To distinguish between
commands which may be executed by an unprivileged user and
those requiring superuser privileges, commands are prepended
by $ or # respectively. This symbol is not a part of the com-
mand.

1.1 For the impatient8

While we believe that everything in this manual is important to at9

least some of our users, we realize it is a lot of material to cover
and that you may wish to experience early success using the
software before delving into the details. Therefore, we suggest
reading in the following order.

First, read this chapter, ‹About this manual›, from the beginning 10

and ending with the ‹Terms› section. Next, skip to the three tu-
torials at the front of the ‹Examples› section designed to teach
you image building and customization basics. Read ‹Using the
examples› first, followed by ‹Tutorial 1: A default image›, ‹Tuto-
rial 2: A web browser utility› and finally ‹Tutorial 3: A personal-
ized image›. By the end of these tutorials, you will have a taste
of what can be done with live systems.

We encourage you to return to more in-depth study of the man- 11

ual, perhaps next reading ‹The basics›, skimming or skipping
‹Building a netboot image›, and finishing by reading the ‹Cus-
tomization overview› and the chapters that follow it. By this
point, we hope you are thoroughly excited by what can be done
with live systems and motivated to read the rest of the manual,
cover-to-cover.

1.2 Terms 12

• Live system : An operating system that can boot without in- 13

stallation to a hard drive. Live systems do not alter local op-
erating system(s) or file(s) already installed on the computer
hard drive unless instructed to do so. Live systems are typi-
cally booted from media such as CDs, DVDs or USB sticks.
Some may also boot over the network (via netboot images,
see ‹Building a netboot image›), and over the Internet (via
the boot parameter fetch=URL, see ‹Webbooting›).

• Live medium : As distinct from live system, the live medium 14

refers to the CD, DVD or USB stick where the binary pro-
duced by live-build and used to boot the live system is written.
More broadly, the term also refers to any place where this bi-
nary resides for the purposes of booting the live system, such
as the location for the network boot files.

• Live Systems Project : The project which maintains, among 15

3

http://live-systems.org/

Live Systems Manual

others, the live-boot, live-build, live-config, live-tools and live-
manual packages.

• Host system : The environment used to create the live sys-16

tem.

• Target system : The environment used to run the live sys-17

tem.

• live-boot : A collection of scripts used to boot live systems.18

• live-build : A collection of scripts used to build customized19

live systems.

• live-config : A collection of scripts used to configure a live20

system during the boot process.

• live-tools : A collection of additional scripts used to perform21

useful tasks within a running live system.

• live-manual : This document is maintained in a package22

called live-manual.

• Debian Installer (d-i) : The official installation system for the23

Debian distribution.

• Boot parameters : Parameters that can be entered at the24

bootloader prompt to influence the kernel or live-config.

• chroot : The chroot program, chroot(8), enables us to run25

different instances of the GNU/Linux environment on a single
system simultaneously without rebooting.

• Binary image : A file containing the live system, such as live-26

image-i386.hybrid.iso or live-image-i386.img.

• Target distribution : The distribution upon which your live27

system will be based. This can differ from the distribution of
your host system.

• stable/testing/unstable : The stable distribution, currently28

codenamed wheezy , contains the latest officially released
distribution of Debian. The testing distribution, temporarily
codenamed jessie , is the staging area for the next stable
release. A major advantage of using this distribution is that
it has more recent versions of software relative to the stable
release. The unstable distribution, permanently codenamed
sid , is where active development of Debian occurs. Gener-
ally, this distribution is run by developers and those who like
to live on the edge. Throughout the manual, we tend to use
codenames for the releases, such as jessie or sid , as that
is what is supported by the tools themselves.

1.3 Authors 29

A list of authors (in alphabetical order): 30

• Ben Armstrong 31

• Brendan Sleight 32

• Carlos Zuferri 33

• Chris Lamb 34

• Daniel Baumann 35

• Franklin Piat 36

• Jonas Stein 37

• Kai Hendry 38

• Marco Amadori 39

• Mathieu Geli 40

• Matthias Kirschner 41

• Richard Nelson 42

• Trent W. Buck 43

4

Live Systems Manual

1.4 Contributing to this document44

This manual is intended as a community project and all propos-45

als for improvements and contributions are extremely welcome.
Please see the section ‹Contributing to the project› for detailed
information on how to fetch the commit key and make good
commits.

1.4.1 Applying changes46

In order to make changes to the English manual you have to47

edit the right files in manual/en/ but prior to the submission of
your contribution, please preview your work. To preview the
live-manual, ensure the packages needed for building it are in-
stalled by executing:

48

apt-get install make po4a ruby ruby-nokogiri sisu-complete

You may build the live-manual from the top level directory of49

your Git checkout by executing:

50

$ make build

Since it takes a while to build the manual in all supported lan-51

guages, authors may find it convenient to use one of the fast
proofing shortcuts when reviewing the new documentation they
have added to the English manual. Using PROOF=1 builds live-
manual in html format, but without the segmented html files, and
using PROOF=2 builds live-manual in pdf format, but only the A4
and letter portraits. That is why using either of the PROOF= pos-
sibilities can save up a considerable amount of time, e.g:

52

$ make build PROOF=1

When proofing one of the translations it is possible to build only 53

one language by executing, e.g:

54

$ make build LANGUAGES=de

It is also possible to build by document type, e.g: 55

56

$ make build FORMATS=pdf

Or combine both, e.g: 57

58

$ make build LANGUAGES=de FORMATS=html

After revising your work and making sure that everything is fine, 59

do not use make commit unless you are updating translations in
the commit, and in that case, do not mix changes to the English
manual and translations in the same commit, but use separate
commits for each. See the ‹Translation› section for more de-
tails.

1.4.2 Translation 60

In order to translate live-manual, follow these steps depending 61

on whether you are starting a translation from scratch or con-
tinue working on an already existing one:

• Start a new translation from scratch 62

5

Live Systems Manual

• Translate the about_manual.ssi.pot , about_project.ssi.pot63

and index.html.in.pot files in manual/pot/ to your
language with your favourite editor (such as poedit) and
send the translated .po files to the mailing list to check
their integrity. live-manual' s integrity check not only
ensures that the .po files are 100% translated but it also
detects possible errors.

• Once checked, to enable a new language in the autobuild64

it is enough to add the initial translated files to manual/-

po/${LANGUAGE}/ and run make commit. And then, edit
manual/_sisu/home/index.html adding the name of the
language and its name in English between brackets.

• Continue with an already started translation65

• If your target language has already been added, you66

can randomly continue translating the remaining .po files
in manual/po/${LANGUAGE}/ using your favourite editor
(such as poedit) .

• Do not forget that you need to run make commit to ensure67

that the translated manuals are updated from the .po
files and then you can review your changes launching
make build before git add ., git commit -m “Trans-

lating...” and git push. Remember that since make

build can take a considerable amount of time, you can
proofread languages individually as explained in ‹Apply-
ing changes›

After running make commit you will see some text scroll by.68

These are basically informative messages about the process-
ing status and also some hints about what can be done in order
to improve live-manual. Unless you see a fatal error, you usu-
ally can proceed and submit your contribution.

live-manual comes with two utilities that can greatly help trans-69

lators to find untranslated and changed strings. The first one

is “make translate”. It launches an script that tells you in detail
how many untranslated strings there are in each .po file. The
second one, the “make fixfuzzy” target, only acts upon changed
strings but it helps you to find and fix them one by one.

Keep in mind that even though these utilities might be really 70

helpful to do translation work on the command line, the use of an
specialized tool like poedit is the recommended way to do the
task. It is also a good idea to read the Debian localization (l10n)
documentation and, specifically to live-manual, the ‹Guidelines
for translators›.

Note: You can use make clean to clean your git tree before 71

pushing. This step is not compulsory thanks to the .gitignore
file but it is a good practice to avoid committing files involuntar-
ily.

6

Live Systems Manual

About the Live Systems Project72

2. About the Live Systems Project73

2.1 Motivation74

2.1.1 What is wrong with current live systems75

When Live Systems Project was initiated, there were already76

several Debian based live systems available and they are doing
a great job. From the Debian perspective most of them have
one or more of the following disadvantages:

• They are not Debian projects and therefore lack support from77

within Debian.

• They mix different distributions, e.g. testing and unstable .78

• They support i386 only.79

• They modify the behaviour and/or appearance of packages80

by stripping them down to save space.

• They include packages from outside of the Debian archive.81

• They ship custom kernels with additional patches that are not82

part of Debian.

• They are large and slow due to their sheer size and thus not83

suitable for rescue issues.

• They are not available in different flavours, e.g. CDs, DVDs,84

USB-stick and netboot images.

2.1.2 Why create our own live system?85

Debian is the Universal Operating System: Debian has a live86

system to show around and to accurately represent the Debian
system with the following main advantages:

• It is a subproject of Debian.87

• It reflects the (current) state of one distribution. 88

• It runs on as many architectures as possible. 89

• It consists of unchanged Debian packages only. 90

• It does not contain any packages that are not in the Debian 91

archive.

• It uses an unaltered Debian kernel with no additional patches. 92

2.2 Philosophy 93

2.2.1 Only unchanged packages from Debian “main” 94

We will only use packages from the Debian repository in the 95

“main” section. The non-free section is not part of Debian and
therefore cannot be used for official live system images.

We will not change any packages. Whenever we need to 96

change something, we will do that in coordination with its
package maintainer in Debian.

As an exception, our own packages such as live-boot, live-build 97

or live-config may temporarily be used from our own repos-
itory for development reasons (e.g. to create development
snapshots). They will be uploaded to Debian on a regular
basis.

2.2.2 No package configuration of the live system 98

In this phase we will not ship or install sample or alternative con- 99

figurations. All packages are used in their default configuration
as they are after a regular installation of Debian.

Whenever we need a different default configuration, we 100

7

Live Systems Manual

will do that in coordination with its package maintainer in
Debian.

A system for configuring packages is provided using debconf101

allowing custom configured packages to be installed in your
custom produced live system images, but for the ‹prebuilt live
images› we choose to leave packages in their default configu-
ration, unless absolutely necessary in order to work in the live
environment. Wherever possible, we prefer to adapt packages
within the Debian archive to work better in a live system versus
making changes to the live toolchain or ‹prebuilt image con-
figurations›. For more information, please see ‹Customization
overview›.

2.3 Contact102

• Mailing list : The primary contact for the project is the mailing103

list at ‹http://lists.debian.org/debian-live/›. You can email the list di-
rectly by addressing your mail to ‹debian-live@lists.debian.org.› The
list archives are available at ‹http://lists.debian.org/debian-live/›.

• IRC : A number of users and developers are present in the104

#debian-live channel on irc.debian.org (OFTC). When asking
a question on IRC, please be patient for an answer. If no
answer is forthcoming, please email the mailing list.

• BTS : The ‹Reporting bugs›.105

8

http://lists.debian.org/debian-live/
debian-live@lists.debian.org.
http://lists.debian.org/debian-live/

Live Systems Manual

User106

9

Live Systems Manual

Installation107

3. Installation108

3.1 Requirements109

Building live system images has very few system require-110

ments:

• Superuser (root) access111

• An up-to-date version of live-build112

• A POSIX-compliant shell, such as bash or dash113

• python3114

• debootstrap or cdebootstrap115

• Linux 2.6 or newer.116

Note that using Debian or a Debian-derived distribution is not117

required - live-build will run on almost any distribution with the
above requirements.

3.2 Installing live-build118

You can install live-build in a number of different ways:119

• From the Debian repository120

• From source121

• From snapshots122

If you are using Debian, the recommended way is to install live-123

build via the Debian repository.

3.2.1 From the Debian repository124

Simply install live-build like any other package:125

126

apt-get install live-build

3.2.2 From source 127

live-build is developed using the Git version control system. On 128

Debian based systems, this is provided by the git package. To
check out the latest code, execute:

129

$ git clone git://live-systems.org/git/live-build.git

You can build and install your own Debian package by execut- 130

ing:

131

$ cd live-build
$ dpkg-buildpackage -b -uc -us
$ cd ..

Now install whichever of the freshly built .deb files you were 132

interested in, e.g.

133

dpkg -i live-build_3.0-1_all.deb

You can also install live-build directly to your system by execut- 134

ing:

135

10

Live Systems Manual

make install

and uninstall it with:136

137

make uninstall

3.2.3 From `snapshots'138

If you do not wish to build or install live-build from source, you139

can use snapshots. These are built automatically from the
latest version in Git and are available on ‹http://live-systems.org/
debian/›.

3.3 Installing live-boot and live-config140

Note: You do not need to install live-boot or live-config on your141

system to create customized live systems. However, doing so
will do no harm and is useful for reference purposes. If you only
want the documentation, you may now install the live-boot-doc
and live-config-doc packages separately.

3.3.1 From the Debian repository142

Both live-boot and live-config are available from the Debian143

repository as per ‹Installing live-build›.

3.3.2 From source144

To use the latest source from git, you can follow the process145

below. Please ensure you are familiar with the termsmentioned
in ‹Terms›.

• Checkout the live-boot and live-config sources 146

147

$ git clone git://live-systems.org/git/live-boot.git
$ git clone git://live-systems.org/git/live-config.git

Consult the live-boot and live-config man pages for details on 148

customizing if that is your reason for building these packages
from source.

• Build live-boot and live-config .deb files 149

You must build either on your target distribution or in a chroot 150

containing your target platform: this means if your target is
jessie then you should build against jessie .

Use a personal builder such as pbuilder or sbuild if you need to 151

build live-boot for a target distribution that differs from your build
system. For example, for jessie live images, build live-boot in a
jessie chroot. If your target distribution happens to match your
build system distribution, youmay build directly on the build sys-
tem using dpkg-buildpackage (provided by the dpkg-dev pack-
age):

152

$ cd live-boot
$ dpkg-buildpackage -b -uc -us
$ cd ../live-config
$ dpkg-buildpackage -b -uc -us

• Use applicable generated .deb files 153

As live-boot and live-config are installed by live-build system, 154

installing the packages in the host system is not sufficient: you
should treat the generated .deb files like any other custom pack-
ages. Since your purpose for building from source is likely to
test new things over the short term before the official release,

11

http://live-systems.org/debian/
http://live-systems.org/debian/

Live Systems Manual

follow ‹Installing modified or third-party packages› to temporar-
ily include the relevant files in your configuration. In particu-
lar, notice that both packages are divided into a generic part,
a documentation part and one or more back-ends. Include the
generic part, only one back-end matching your configuration,
and optionally the documentation. Assuming you are building
a live image in the current directory and have generated all .deb
files for a single version of both packages in the directory above,
these bash commands would copy all of the relevant packages
including default back-ends:

155

$ cp ../live-boot{_,-initramfs-tools,-doc}*.deb config/packages.chroot←↩
/

$ cp ../live-config{_,-sysvinit,-doc}*.deb config/packages.chroot/

3.3.3 From `snapshots'156

You can let live-build automatically use the latest snapshots of157

live-boot and live-config by configuring the package repository
on live-systems.org as a third-party repository in your live-build
configuration directory.

12

Live Systems Manual

The basics158

4. The basics159

This chapter contains a brief overview of the build process and160

instructions for using the three most commonly used image
types. The most versatile image type, iso-hybrid, may be
used on a virtual machine, optical medium or USB portable stor-
age device. In certain special cases, as explained later, the hdd

type may be more suitable. The chapter includes detailed in-
structions for building and using a netboot type image, which
is a bit more involved due to the setup required on the server.
This is an slightly advanced topic for anyone who is not already
familiar with netbooting, but it is included here because once
the setup is done, it is a very convenient way to test and deploy
images for booting on the local network without the hassle of
dealing with image media.

The section finishes with a quick introduction to ‹webbooting›161

which is, perhaps, the easiest way of using different images for
different purposes, switching from one to the other as needed
using the internet as a means.

Throughout the chapter, we will often refer to the default file-162

names produced by live-build. If you are ‹downloading a pre-
built image› instead, the actual filenames may vary.

4.1 What is a live system?163

A live system usually means an operating system booted on164

a computer from a removable medium, such as a CD-ROM or
USB stick, or from a network, ready to use without any instal-
lation on the usual drive(s), with auto-configuration done at run
time (see ‹Terms›).

With live systems, it's an operating system, built for one of the165

supported architectures (currently amd64 and i386). It is made
from the following parts:

• Linux kernel image , usually named vmlinuz* 166

• Initial RAM disk image (initrd) : a RAM disk set up for the 167

Linux boot, containing modules possibly needed to mount the
System image and some scripts to do it.

• System image : The operating system's filesystem image. 168

Usually, a SquashFS compressed filesystem is used to mini-
mize the live system image size. Note that it is read-only. So,
during boot the live system will use a RAM disk and `union'
mechanism to enable writing files within the running system.
However, all modifications will be lost upon shutdown unless
optional persistence is used (see ‹Persistence›).

• Bootloader : A small piece of code crafted to boot from the 169

chosen medium, possibly presenting a prompt or menu to
allow selection of options/configuration. It loads the Linux
kernel and its initrd to run with an associated system filesys-
tem. Different solutions can be used, depending on the tar-
get medium and format of the filesystem containing the pre-
viously mentioned components: isolinux to boot from a CD
or DVD in ISO9660 format, syslinux for HDD or USB drive
booting from a VFAT partition, extlinux for ext2/3/4 and btrfs
partitions, pxelinux for PXE netboot, GRUB for ext2/3/4 par-
titions, etc.

You can use live-build to build the system image from your 170

specifications, set up a Linux kernel, its initrd, and a bootloader
to run them, all in one medium-dependant format (ISO9660 im-
age, disk image, etc.).

4.2 Downloading prebuilt images 171

While the focus of this manual is developing and building your 172

13

Live Systems Manual

own live images, you may simply wish to try one of our prebuilt
images, either as an introduction to their use or instead of build-
ing your own. These images are built using our ‹live-images git
repository› and official stable releases are published at ‹http://
www.debian.org/CD/live/›. In addition, older and upcoming releases,
and unofficial images containing non-free firmware and drivers
are available at ‹http://live-systems.org/cdimage/release/›.

4.3 Using the web live image builder173

As a service to the community, we run a web-based live im-174

age builder service at ‹http://live-build.debian.net/›. This site is main-
tained on a best effort basis. That is, although we strive to keep
it up-to-date and operational at all times, and do issue notices
for significant operational outages, we cannot guarantee 100%
availability or fast image building, and the service may occa-
sionally have issues that take some time to resolve. If you have
problems or questions about the service, please ‹contact us›,
providing us with the link to your build.

4.3.1 Web builder usage and caveats175

The web interface currently makes no provision to prevent the176

use of invalid combinations of options, and in particular, where
changing an option would normally (i.e. using live-build directly)
change defaults of other options listed in the web form, the web
builder does not change these defaults. Most notably, if you
change --architectures from the default i386 to amd64, you
must change the corresponding option --linux-flavours from
the default 486 to amd64. See the lb_config man page for the
version of live-build installed on the web builder for more details.
The version number of live-build is listed at the bottom of the
web builder page.

The time estimate given by the web builder is a crude estimate177

only and may not reflect how long your build actually takes. Nor
is the estimate updated once it is displayed. Please be patient.
Do not refresh the page you land on after submitting the build,
as this will resubmit a new build with the same parameters. You
should ‹contact us› if you don't receive notification of your build
only once you are certain you've waited long enough and veri-
fied the notification e-mail did not get caught by your own e-mail
spam filter.

The web builder is limited in the kinds of images it can build. 178

This keeps it simple and efficient to use and maintain. If you
would like to make customizations that are not provided for by
the web interface, the rest of this manual explains how to build
your own images using live-build.

4.4 First steps: building an ISO hybrid image 179

Regardless of the image type, you will need to perform the 180

same basic steps to build an image each time. As a first exam-
ple, create a build directory, change to that directory and then
execute the following sequence of live-build commands to cre-
ate a basic ISO hybrid image containing a default live system
without X.org. It is suitable for burning to CD or DVD media,
and also to copy onto a USB stick.

The name of the working directory is absolutely up to you, but if 181

you take a look at the examples used throughout live-manual,
it is a good idea to use a name that helps you identify the im-
age you are working with in each directory, especially if you
are working or experimenting with different image types. In this
case you are going to build a default system so let's call it, for
example, live-default.

182

$ mkdir live-default && cd live-default

14

http://www.debian.org/CD/live/
http://www.debian.org/CD/live/
http://live-systems.org/cdimage/release/
http://live-build.debian.net/

Live Systems Manual

Then, run the lb config commands. This will create a “con-183

fig/” hierarchy in the current directory for use by other com-
mands:

184

$ lb config

No parameters are passed to these commands, so defaults for185

all of their various options will be used. See ‹The lb config com-
mand› for more details.

Now that the “config/” hierarchy exists, build the image with the186

lb build command:

187

lb build

This process can take a while, depending on the speed of188

your computer and your network connection. When it is com-
plete, there should be a live-image-i386.hybrid.iso image
file, ready to use, in the current directory.

4.5 Using an ISO hybrid live image189

After either building or downloading an ISO hybrid image, which190

can be obtained at ‹http://www.debian.org/CD/live/›, the usual next
step is to prepare your medium for booting, either CD-R(W) or
DVD-R(W) optical media or a USB stick.

4.5.1 Burning an ISO image to a physical medium191

Burning an ISO image is easy. Just install xorriso and use it192

from the command-line to burn the image. For instance:

193

apt-get install xorriso
$ xorriso -as cdrecord -v dev=/dev/sr0 blank=as_needed live-image-i386.←↩

hybrid.iso

4.5.2 Copying an ISO hybrid image to a USB stick 194

ISO images prepared with xorriso, can be simply copied to a 195

USB stick with the cp program or an equivalent. Plug in a USB
stick with a size large enough for your image file and determine
which device it is, which we hereafter refer to as ${USBSTICK}.
This is the device file of your key, such as /dev/sdb, not a par-
tition, such as /dev/sdb1! You can find the right device name
by looking in dmesg's output after plugging in the stick, or better
yet, ls -l /dev/disk/by-id.

Once you are certain you have the correct device name, use the 196

cp command to copy the image to the stick. This will definitely
overwrite any previous contents on your stick!

197

$ cp live-image-i386.hybrid.iso ${USBSTICK}
$ sync

Note: The sync command is useful to ensure that all the data, 198

which is stored in memory by the kernel while copying the im-
age, is written to the USB stick.

4.5.3 Using the space left on a USB stick 199

After copying the live-image-i386.hybrid.iso to a USB stick, 200

the first partition on the device will be filled up by the live system.
To use the remaining free space, use a partitioning tool such as
gparted or parted to create a new partition on the stick.

201

15

http://www.debian.org/CD/live/

Live Systems Manual

gparted ${USBSTICK}

After the partition is created, where ${PARTITION} is the name202

of the partition, such as /dev/sdb2, you have to create a filesys-
tem on it. One possible choice would be ext4.

203

mkfs.ext4 ${PARTITION}

Note: If you want to use the extra space with Windows, ap-204

parently that OS cannot normally access any partitions but the
first. Some solutions to this problem have been discussed on
our ‹mailing list›, but it seems there are no easy answers.

Remember: Every time you install a new live-image-205

i386.hybrid.iso on the stick, all data on the stick will be
lost because the partition table is overwritten by the
contents of the image, so back up your extra partition first
to restore again after updating the live image.

4.5.4 Booting the live medium206

The first time you boot your live medium, whether CD, DVD,207

USB key, or PXE boot, some setup in your computer's BIOS
may be needed first. Since BIOSes vary greatly in features
and key bindings, we cannot get into the topic in depth here.
Some BIOSes provide a key to bring up a menu of boot devices
at boot time, which is the easiest way if it is available on your
system. Otherwise, you need to enter the BIOS configuration
menu and change the boot order to place the boot device for
the live system before your normal boot device.

Once you've booted the medium, you are presented with a boot208

menu. If you just press enter here, the system will boot using

the default entry, Live and default options. For more informa-
tion about boot options, see the “help” entry in the menu and
also the live-boot and live-config man pages found within the
live system.

Assuming you've selected Live and booted a default desktop 209

live image, after the boot messages scroll by, you should be
automatically logged into the user account and see a desktop,
ready to use. If you have booted a console-only image, such
as standard or rescue flavour ‹prebuilt images›, you should be
automatically logged in on the console to the user account and
see a shell prompt, ready to use.

4.6 Using a virtual machine for testing 210

It can be a great time-saver for the development of live images 211

to run them in a virtual machine (VM). This is not without its
caveats:

• Running a VM requires enough RAM for both the guest OS 212

and the host and a CPU with hardware support for virtualiza-
tion is recommended.

• There are some inherent limitations to running on a VM, e.g. 213

poor video performance, limited choice of emulated hard-
ware.

• When developing for specific hardware, there is no substitute 214

for running on the hardware itself.

• Occasionally there are bugs that relate only to running in a 215

VM.When in doubt, test your image directly on the hardware.

Provided you can work within these constraints, survey the 216

available VM software and choose one that is suitable for your
needs.

16

Live Systems Manual

4.6.1 Testing an ISO image with QEMU 217

The most versatile VM in Debian is QEMU. If your proces-218

sor has hardware support for virtualization, use the qemu-kvm
package; the qemu-kvm package description briefly lists the re-
quirements.

First, install qemu-kvm if your processor supports it. If not, in-219

stall qemu, in which case the program name is qemu instead of
kvm in the following examples. The qemu-utils package is also
valuable for creating virtual disk images with qemu-img.

220

apt-get install qemu-kvm qemu-utils

Booting an ISO image is simple:221

222

$ kvm -cdrom live-image-i386.hybrid.iso

See the man pages for more details.223

4.6.2 Testing an ISO image with VirtualBox224

In order to test the ISO with virtualbox:225

226

apt-get install virtualbox virtualbox-qt virtualbox-dkms
$ virtualbox

Create a new virtual machine, change the storage settings to227

use live-image-i386.hybrid.iso as the CD/DVD device, and
start the machine.

Note: For live systems containing X.org that you want to test228

with virtualbox, you may wish to include the VirtualBox X.org
driver package, virtualbox-guest-dkms and virtualbox-guest-
x11, in your live-build configuration. Otherwise, the resolution
is limited to 800x600.

229

$ echo "virtualbox-guest-dkms virtualbox-guest-x11" >> config/package-←↩
lists/my.list.chroot

In order to make the dkms package work, also the kernel head- 230

ers for the kernel flavour used in your image need to be in-
stalled. Instead of manually listing the correct linux-headers
package in above created package list, the selection of the right
package can be done automatically by live-build.

231

$ lb config --linux-packages "linux-image linux-headers"

4.7 Building and using an HDD image 232

Building an HDD image is similar to an ISO hybrid one in all 233

respects except you specify -b hdd and the resulting filename is
live-image-i386.img which cannot be burnt to optical media.
It is suitable for booting from USB sticks, USB hard drives, and
various other portable storage devices. Normally, an ISO hybrid
image can be used for this purpose instead, but if you have a
BIOS which does not handle hybrid images properly, you need
an HDD image.

Note: if you created an ISO hybrid image with the previous 234

example, you will need to clean up your working directory with
the lb clean command (see ‹The lb clean command›):

235

17

Live Systems Manual

lb clean --binary

Run the lb config command as before, except this time spec-236

ifying the HDD image type:

237

$ lb config -b hdd

Now build the image with the lb build command:238

239

lb build

When the build finishes, a live-image-i386.img file should be240

present in the current directory.

The generated binary image contains a VFAT partition and the241

syslinux bootloader, ready to be directly written on a USB de-
vice. Once again, using an HDD image is just like using an ISO
hybrid one on USB. Follow the instructions in ‹Using an ISO hy-
brid live image›, except use the filename live-image-i386.img

instead of live-image-i386.hybrid.iso.

Likewise, to test an HDD image with Qemu, install qemu as242

described above in ‹Testing an ISO image with QEMU›. Then
run kvm or qemu, depending on which version your host sys-
tem needs, specifying live-image-i386.img as the first hard
drive.

243

$ kvm -hda live-image-i386.img

4.8 Building a netboot image244

The following sequence of commands will create a basic net- 245

boot image containing a default live system without X.org. It is
suitable for booting over the network.

Note: if you performed any previous examples, you will need 246

to clean up your working directory with the lb clean com-
mand:

247

lb clean

In this specific case, a lb clean --binary would not be enough 248

to clean up the necessary stages. The cause for this is that in
netboot setups, a different initramfs configuration needs to be
used which live-build performs automatically when building net-
boot images. Since the initramfs creation belongs to the chroot
stage, switching to netboot in an existing build directory means
to rebuild the chroot stage too. Therefore, lb clean (which will
remove the chroot stage, too) needs to be used.

Run the lb config command as follows to configure your image 249

for netbooting:

250

$ lb config -b netboot --net-root-path "/srv/debian-live" --net-root-←↩
server "192.168.0.2"

In contrast with the ISO and HDD images, netbooting does not, 251

itself, serve the filesystem image to the client, so the files must
be served via NFS. Different network filesystems can be cho-
sen through lb config. The --net-root-path and --net-root-

server options specify the location and server, respectively, of
the NFS server where the filesystem image will be located at

18

Live Systems Manual

boot time. Make sure these are set to suitable values for your
network and server.

Now build the image with the lb build command:252

253

lb build

In a network boot, the client runs a small piece of software which254

usually resides on the EPROM of the Ethernet card. This pro-
gram sends a DHCP request to get an IP address and informa-
tion about what to do next. Typically, the next step is getting
a higher level bootloader via the TFTP protocol. That could be
pxelinux, GRUB, or even boot directly to an operating system
like Linux.

For example, if you unpack the generated live-image-255

i386.netboot.tar archive in the /srv/debian-live directory,
you'll find the filesystem image in live/filesystem.squashfs

and the kernel, initrd and pxelinux bootloader in tftp-

boot/.

We must now configure three services on the server to enable256

netbooting: the DHCP server, the TFTP server and the NFS
server.

4.8.1 DHCP server257

We must configure our network's DHCP server to be sure to258

give an IP address to the netbooting client system, and to ad-
vertise the location of the PXE bootloader.

Here is an example for inspiration, written for the ISC DHCP259

server isc-dhcp-server in the /etc/dhcp/dhcpd.conf configu-
ration file:

260

/etc/dhcp/dhcpd.conf - configuration file for isc-dhcp-server

ddns-update-style none;

option domain-name "example.org";
option domain-name-servers ns1.example.org, ns2.example.org;

default-lease-time 600;
max-lease-time 7200;

log-facility local7;

subnet 192.168.0.0 netmask 255.255.255.0 {
range 192.168.0.1 192.168.0.254;
filename "pxelinux.0";
next-server 192.168.0.2;
option subnet-mask 255.255.255.0;
option broadcast-address 192.168.0.255;
option routers 192.168.0.1;

}

4.8.2 TFTP server 261

This serves the kernel and initial ramdisk to the system at run 262

time.

You should install the tftpd-hpa package. It can serve all files 263

contained inside a root directory, usually /srv/tftp. To let it
serve files inside /srv/debian-live/tftpboot, run as root the
following command:

264

dpkg-reconfigure -plow tftpd-hpa

and fill in the new tftp server directory when being asked about 265

it.

19

Live Systems Manual

4.8.3 NFS server 266

Once the guest computer has downloaded and booted a Linux267

kernel and loaded its initrd, it will try to mount the Live filesystem
image through a NFS server.

You need to install the nfs-kernel-server package.268

Then, make the filesystem image available through NFS by269

adding a line like the following to /etc/exports:

270

/srv/debian-live *(ro,async,no_root_squash,no_subtree_check)

and tell the NFS server about this new export with the following271

command:

272

exportfs -rv

Setting up these three services can be a little tricky.273

You might need some patience to get all of them work-
ing together. For more information, see the syslinux
wiki at ‹http://www.syslinux.org/wiki/index.php/PXELINUX› or the
Debian Installer Manual's TFTP Net Booting section at
‹http://d-i.alioth.debian.org/manual/en.i386/ch04s05.html›. They might
help, as their processes are very similar.

4.8.4 Netboot testing HowTo274

Netboot image creation is made easy with live-build, but testing275

the images on physical machines can be really time consum-
ing.

To make our life easier, we can use virtualization.276

4.8.5 Qemu 277

• Install qemu, bridge-utils, sudo. 278

Edit /etc/qemu-ifup: 279

280

#!/bin/sh
sudo -p "Password for $0:" /sbin/ifconfig $1 172.20.0.1
echo "Executing /etc/qemu-ifup"
echo "Bringing up $1 for bridged mode..."
sudo /sbin/ifconfig $1 0.0.0.0 promisc up
echo "Adding $1 to br0..."
sudo /usr/sbin/brctl addif br0 $1
sleep 2

Get, or build a grub-floppy-netboot. 281

Launch qemuwith “-net nic,vlan=0 -net tap,vlan=0,ifname=tun0”282

4.9 Webbooting 283

Webbooting is a convenient way of retrieving and booting live 284

systems using the internet as a means. The requirements for
webbooting are very few. On the one hand, you need a medium
with a bootloader, an initial ramdisk and a kernel. On the other
hand, a web server to store the squashfs files which contain the
filesystem.

4.9.1 Getting the webboot files 285

As usual, you can build the images yourself or use the pre-built 286

files, which are available on the project's homepage at ‹http://
live-systems.org/›. Using pre-built images would be handy for doing
initial testing until one can fine tune their own needs. If you have
built a live image you will find the files needed for webbooting

20

http://www.syslinux.org/wiki/index.php/PXELINUX
http://d-i.alioth.debian.org/manual/en.i386/ch04s05.html
http://live-systems.org/
http://live-systems.org/

Live Systems Manual

in the build directory under binary/live/. The files are called
vmlinuz, initrd.img and filesystem.squashfs.

It is also possible to extract those files from an already existing287

iso image. In order to achieve that, loopback mount the image
as follows:

288

mount -o loop image.iso /mnt

The files are to be found under the live/ directory. In this spe-289

cific case, it would be /mnt/live/. This method has the disad-
vantage that you need to be root to be able to mount the image.
However, it has the advantage that it is easily scriptable and
thus, easily automatized.

But undoubtedly, the easiest way of extracting the files from an290

iso image and uploading it to the web server at the same time, is
using themidnight commander ormc. If you have the genisoim-
age package installed, the two-pane file manager allows you to
browse the contents of an iso file in one pane and upload the
files via ftp in the other pane. Even though this method requires
manual work, it does not require root privileges.

4.9.2 Booting webboot images291

While some users will prefer virtualization to test webbooting,292

we refer to real hardware here to match the following possi-
ble use case which should only be considered as an exam-
ple.

In order to boot a webboot image it is enough to have the com-293

ponents mentioned above, i.e. vmlinuz and initrd.img in a
usb stick inside a directory named live/ and install syslinux as
bootloader. Then boot from the usb stick and type fetch=URL/-

PATH/TO/FILE at the boot options. live-boot will retrieve the

squashfs file and store it into ram. This way, it is possible to
use the downloaded compressed filesystem as a regular live
system. For example:

294

append boot=live components fetch=http://192.168.2.50/images/webboot/←↩
filesystem.squashfs

Use case: You have a web server in which you have stored 295

two squashfs files, one which contains a full desktop, like for
example gnome, and a rescue one. If you need a graphical
environment for one machine, you can plug your usb stick in
and webboot the gnome image. If you need the rescue tools
included in the second type of image, perhaps for another ma-
chine, you can webboot the rescue one.

21

Live Systems Manual

Overview of tools296

5. Overview of tools297

This chapter contains an overview of the three main tools298

used in building live systems: live-build, live-boot and live-
config.

5.1 The live-build package299

live-build is a collection of scripts to build live systems. These300

scripts are also referred to as “commands”.

The idea behind live-build is to be a framework that uses a con-301

figuration directory to completely automate and customize all
aspects of building a Live image.

Many concepts are similar to those used to build Debian pack-302

ages with debhelper:

• The scripts have a central location for configuring their op-303

eration. In debhelper, this is the debian/ subdirectory of a
package tree. For example, dh_install will look, among oth-
ers, for a file called debian/install to determine which files
should exist in a particular binary package. In much the same
way, live-build stores its configuration entirely under a con-

fig/ subdirectory.

• The scripts are independent - that is to say, it is always safe304

to run each command.

Unlike debhelper, live-build provides the tools to generate a305

skeleton configuration directory. This could be considered to be
similar to tools such as dh-make. For more information about
these tools, read on, since the remainder of this section dis-
cuses the four most important commands. Note that the pre-
ceding lb is a generic wrapper for live-build commands.

• lb config : Responsible for initializing and configuring a Live 306

system configuration directory. See The lb config command
for more information.

• lb build : Responsible for starting a Live system build. See 307

‹The lb build command› for more information.

• lb clean : Responsible for removing parts of a Live system 308

build. See ‹The lb clean command› for more information.

5.1.1 The lb config command 309

As discussed in ‹live-build›, the scripts that make up live-build 310

read their configuration with the source command from a sin-
gle directory named config/. As constructing this directory by
hand would be time-consuming and error-prone, the lb config

command can be used to create the initial skeleton configura-
tion tree.

The lb config command creates the following directories in- 311

side config/: hooks/, includes/, several other includes sub-
directories for each stage of the build process and package-

lists/. The latter includes a list of several important live pack-
ages like live-boot, live-config and live-config-sysvinit.

Issuing lb config without any arguments completes the con- 312

fig/ subdirectory which it populates with some default settings
in configuration files, and two skeleton trees named auto/ and
local/.

313

$ lb config
[2014-04-25 17:14:34] lb config
P: Updating config tree for a debian/wheezy/i386 system

Using lb config without any arguments would be suitable for 314

users who need a very basic image, or who intend to provide a

22

Live Systems Manual

more complete configuration via auto/config later (see ‹Man-
aging a configuration› for details).

Normally, you will want to specify some options. For example,315

to specify which package manager to use while building the
image:

316

$ lb config --apt aptitude

It is possible to specify many options, such as:317

318

$ lb config --binary-images netboot --bootappend-live "boot=live ←↩
components hostname=live-host username=live-user" ...

A full list of options is available in the lb_config man319

page.

5.1.2 The lb build command320

The lb build command reads in your configuration from the321

config/ directory. It then runs the lower level commands
needed to build your Live system.

5.1.3 The lb clean command322

It is the job of the lb clean command to remove various parts323

of a build so subsequent builds can start from a clean state. By
default, chroot, binary and source stages are cleaned, but the
cache is left intact. Also, individual stages can be cleaned. For
example, if you have made changes that only affect the binary
stage, use lb clean --binary prior to building a new binary. If
your changes invalidate the bootstrap and/or package caches,

e.g. changes to --mode, --architecture, or --bootstrap, you
must use lb clean --purge. See the lb_clean man page for
a full list of options.

5.2 The live-boot package 324

live-boot is a collection of scripts providing hooks for the 325

initramfs-tools, used to generate an initramfs capable of
booting live systems, such as those created by live-build. This
includes the live system ISOs, netboot tarballs, and USB stick
images.

At boot time it will look for read-only media containing a /live/ 326

directory where a root filesystem (often a compressed filesys-
tem image like squashfs) is stored. If found, it will create a
writable environment, using aufs, for Debian like systems to
boot from.

More information on initial ramfs in Debian can be found in the 327

Debian Linux Kernel Handbook at ‹http://kernel-handbook.alioth.debian.
org/› in the chapter on initramfs.

5.3 The live-config package 328

live-config consists of the scripts that run at boot time after live- 329

boot to configure the live system automatically. It handles such
tasks as setting the hostname, locales and timezone, creating
the live user, inhibiting cron jobs and performing autologin of
the live user.

23

http://kernel-handbook.alioth.debian.org/
http://kernel-handbook.alioth.debian.org/

Live Systems Manual

Managing a configuration330

6. Managing a configuration331

This chapter explains how to manage a live configuration from332

initial creation, through successive revisions and successive
releases of both the live-build software and the live image it-
self.

6.1 Dealing with configuration changes333

Live configurations rarely are perfect on the first try. It may334

be fine to pass lb config options from the command-line to
perform a single build, but it is more typical to revise those op-
tions and build again until you are satisfied. To support these
changes, you will need auto scripts which ensure your configu-
ration is kept in a consistent state.

6.1.1 Why use auto scripts? What do they do?335

The lb config command stores the options you pass to it in336

config/* files along with many other options set to default val-
ues. If you run lb config again, it will not reset any option that
was defaulted based on your initial options. So, for example, if
you run lb config again with a new value for --binary-images,
any dependent options that were defaulted for the old image
type may no longer work with the new ones. Nor are these files
intended to be read or edited. They store values for over a hun-
dred options, so nobody, let alone yourself, will be able to see
in these which options you actually specified. And finally, if you
run lb config, then upgrade live-build and it happens to re-
name an option, config/* would still contain variables named
after the old option that are no longer valid.

For all these reasons, auto/* scripts will make your life easier.337

They are simple wrappers to the lb config, lb build and lb

clean commands that are designed to help you manage your
configuration. The auto/config script stores your lb config

command with all desired options, the auto/clean script re-
moves the files containing configuration variable values, and
the auto/build script keeps a build.log of each build. Each
of these scripts is run automatically every time you run the cor-
responding lb command. By using these scripts, your configu-
ration is easier to read and is kept internally consistent from one
revision to the next. Also, it will be much easier for you iden-
tify and fix options which need to change when you upgrade
live-build after reading the updated documentation.

6.1.2 Use example auto scripts 338

For your convenience, live-build comes with example auto shell 339

scripts to copy and edit. Start a new, default configuration, then
copy the examples into it:

340

$ mkdir mylive && cd mylive && lb config
$ mkdir auto
$ cp /usr/share/doc/live-build/examples/auto/* auto/

Edit auto/config, adding any options as you see fit. For in- 341

stance:

342

#!/bin/sh
lb config noauto \

--architectures i386 \
--linux-flavours 686-pae \
--binary-images hdd \
--mirror-bootstrap http://ftp.ch.debian.org/debian/ \
--mirror-binary http://ftp.ch.debian.org/debian/ \
"${@}"

24

Live Systems Manual

Now, each time you use lb config, auto/config will reset the343

configuration based on these options. When you want to make
changes to them, edit the options in this file instead of passing
them to lb config. When you use lb clean, auto/clean will
clean up the config/* files along with any other build products.
And finally, when you use lb build, a log of the build will be
written by auto/build in build.log.

Note: A special noauto parameter is used here to suppress344

another call to auto/config, thereby preventing infinite recur-
sion. Make sure you don't accidentally remove it when making
edits. Also, take care to ensure when you split the lb config

command across multiple lines for readability, as shown in the
example above, that you don't forget the backslash (at the end
of each line that continues to the next.

6.2 Clone a configuration published via Git345

Use the lb config --config option to clone a Git repository346

that contains a live system configuration. If you would like to
base your configuration on one maintained by the Live Sys-
tems Project, look at ‹http://live-systems.org/gitweb/› for the reposi-
tory named live-images in the category Packages. This repos-
itory contains the configurations for the live systems ‹prebuilt
images›.

For example, to build a rescue image, use the live-images347

repository as follows:

348

$ mkdir live-images && cd live-images
$ lb config --config git://live-systems.org/git/live-images.git
$ cd images/rescue

Edit auto/config and any other things you need in the config349

tree to suit your needs. For example, the unofficial non-free

prebuilt images are made by simply adding --archive-areas

“main contrib non-free”.

You may optionally define a shortcut in your Git configuration 350

by adding the following to your ${HOME}/.gitconfig:

351

[url "git://live-systems.org/git/"]
insteadOf = lso:

This enables you to use lso: anywhere you need to specify 352

the address of a live-systems.org git repository. If you also
drop the optional .git suffix, starting a new image using this
configuration is as easy as:

353

$ lb config --config lso:live-images

Cloning the entire live-images repository pulls the configura- 354

tions used for several images. If you feel like building a different
image after you have finished with the first one, change to an-
other directory and again and optionally, make any changes to
suit your needs.

In any case, remember that every time you will have to build 355

the image as superuser: lb build

25

http://live-systems.org/gitweb/

Live Systems Manual

Customizing contents356

7. Customization overview357

This chapter gives an overview of the various ways in which358

you may customize a live system.

7.1 Build time vs. boot time configuration359

Live system configuration options are divided into build-time op-360

tions which are options that are applied at build time and boot-
time options which are applied at boot time. Boot-time options
are further divided into those occurring early in the boot, ap-
plied by the live-boot package, and those that happen later in
the boot, applied by live-config. Any boot-time option may be
modified by the user by specifying it at the boot prompt. The
image may also be built with default boot parameters so users
can normally just boot directly to the live system without spec-
ifying any options when all of the defaults are suitable. In par-
ticular, the argument to lb --bootappend-live consists of any
default kernel command line options for the Live system, such
as persistence, keyboard layouts, or timezone. See ‹Customiz-
ing locale and language›, for example.

Build-time configuration options are described in the lb con-361

fig man pages. Boot-time options are described in the man
pages for live-boot and live-config. Although the live-boot and
live-config packages are installed within the live system you are
building, it is recommended that you also install them on your
build system for easy reference when you are working on your
configuration. It is safe to do so, as none of the scripts con-
tained within them are executed unless the system is config-
ured as a live system.

7.2 Stages of the build362

The build process is divided into stages, with various cus- 363

tomizations applied in sequence in each. The first stage to run
is the bootstrap stage. This is the initial phase of populating
the chroot directory with packages to make a barebones
Debian system. This is followed by the chroot stage, which
completes the construction of chroot directory, populating it
with all of the packages listed in the configuration, along with
any other materials. Most customization of content occurs
in this stage. The final stage of preparing the live image is
the binary stage, which builds a bootable image, using the
contents of the chroot directory to construct the root filesystem
for the Live system, and including the installer and any other
additional material on the target medium outside of the Live
system's filesystem. After the live image is built, if enabled, the
source tarball is built in the source stage.

Within each of these stages, there is a particular sequence in 364

which commands are applied. These are arranged in such a
way as to ensure customizations can be layered in a reason-
able fashion. For example, within the chroot stage, preseeds
are applied before any packages are installed, packages are
installed before any locally included files are copied, and hooks
are run later, after all of the materials are in place.

7.3 Supplement lb config with files 365

Although lb config creates a skeletal configuration in the con- 366

fig/ directory, to accomplish your goals, you may need to pro-
vide additional files in subdirectories of config/. Depending
on where the files are stored in the configuration, they may be
copied into the live system's filesystem or into the binary im-
age filesystem, or may provide build-time configurations of the
system that would be cumbersome to pass as command-line

26

Live Systems Manual

options. You may include things such as custom lists of pack-
ages, custom artwork, or hook scripts to run either at build time
or at boot time, boosting the already considerable flexibility of
debian-live with code of your own.

7.4 Customization tasks367

The following chapters are organized by the kinds of customiza-368

tion task users typically perform: ‹Customizing package instal-
lation›, ‹Customizing contents› and ‹Customizing locale and
language› cover just a few of the things you might want to
do.

27

Live Systems Manual

Customizing package installation369

8. Customizing package installation370

Perhaps the most basic customization of a live system is the se-371

lection of packages to be included in the image. This chapter
guides you through the various build-time options to customize
live-build' s installation of packages. The broadest choices in-
fluencing which packages are available to install in the image
are the distribution and archive areas. To ensure decent down-
load speeds, you should choose a nearby distribution mirror.
You can also add your own repositories for backports, exper-
imental or custom packages, or include packages directly as
files. You can define lists of packages, including metapackages
which will install many related packages at once, such as pack-
ages for a particular desktop or language. Finally, a number of
options give some control over apt, or if you prefer, aptitude,
at build time when packages are installed. You may find these
handy if you use a proxy, want to disable installation of rec-
ommended packages to save space, or need to control which
versions of packages are installed via APT pinning, to name a
few possibilities.

8.1 Package sources372

8.1.1 Distribution, archive areas and mode373

The distribution you choose has the broadest impact on which374

packages are available to include in your live image. Specify
the codename, which defaults to jessie for the jessie ver-
sion of live-build. Any current distribution carried in the archive
may be specified by its codename here. (See ‹Terms› for more
details.) The --distribution option not only influences the
source of packages within the archive, but also instructs live-
build to behave as needed to build each supported distribution.

For example, to build against the unstable release, sid , spec-
ify:

375

$ lb config --distribution sid

Within the distribution archive, archive areas aremajor divisions 376

of the archive. In Debian, these are main, contrib and non-

free. Only main contains software that is part of the Debian
distribution, hence that is the default. One or more values may
be specified, e.g.

377

$ lb config --archive-areas "main contrib non-free"

Experimental support is available for some Debian derivatives 378

through a --mode option. By default, this option is set to debian

only if you are building on a Debian or on an unknown system.
If lb config is invoked on any of the supported derivatives, it
will default to create an image of that derivative. If lb config

is run in e.g. ubuntu mode, the distribution names and archive
areas for the specified derivative are supported instead of the
ones for Debian. The mode also modifies live-build behaviour
to suit the derivatives.

Note: The projects for whom these modes were added are pri- 379

marily responsible for supporting users of these options. The
Live Systems Project, in turn, provides development support
on a best-effort basis only, based on feedback from the deriva-
tive projects as we do not develop or support these derivatives
ourselves.

28

Live Systems Manual

8.1.2 Distribution mirrors 380

The Debian archive is replicated across a large network of381

mirrors around the world so that people in each region can
choose a nearby mirror for best download speed. Each of the
--mirror-* options governs which distribution mirror is used at
various stages of the build. Recall from ‹Stages of the build›
that the bootstrap stage is when the chroot is initially pop-
ulated by debootstrap with a minimal system, and the chroot
stage is when the chroot used to construct the live system's
filesystem is built. Thus, the corresponding mirror switches
are used for those stages, and later, in the binary stage, the
--mirror-binary and --mirror-binary-security values are
used, superseding any mirrors used in an earlier stage.

8.1.3 Distribution mirrors used at build time382

To set the distribution mirrors used at build time to point at383

a local mirror, it is sufficient to set --mirror-bootstrap, --

mirror-chroot-security and --mirror-chroot-backports as
follows.

384

$ lb config --mirror-bootstrap http://localhost/debian/ \
--mirror-chroot-security http://localhost/debian-security/ \
--mirror-chroot-backports http://localhost/debian-backports/

The chroot mirror, specified by --mirror-chroot, defaults to385

the --mirror-bootstrap value.

8.1.4 Distribution mirrors used at run time386

The --mirror-binary* options govern the distribution mirrors387

placed in the binary image. These may be used to install addi-
tional packages while running the live system. The defaults em-
ploy http.debian.net, a service that chooses a geographically
close mirror based, among other things, on the user's IP family
and the availability of the mirrors. This is a suitable choice when
you cannot predict which mirror will be best for all of your users.
Or you may specify your own values as shown in the example
below. An image built from this configuration would only be suit-
able for users on a network where “mirror” is reachable.

388

$ lb config --mirror-binary http://mirror/debian/ \
--mirror-binary-security http://mirror/debian-security/ \
--mirror-binary-backports http://mirror/debian-backports/

8.1.5 Additional repositories 389

You may add more repositories, broadening your package 390

choices beyond what is available in your target distribution.
These may be, for example, for backports, experimental or
custom packages. To configure additional repositories, create
config/archives/your-repository.list.chroot, and/or
config/archives/your-repository.list.binary files. As
with the --mirror-* options, these govern the repositories
used in the chroot stage when building the image, and in the
binary stage, i.e. for use when running the live system.

For example, config/archives/live.list.chroot allows you 391

to install packages from the debian-live snapshot repository at
live system build time.

392

deb http://live-systems.org/ sid-snapshots main contrib non-free

29

Live Systems Manual

If you add the same line to config/archives/live.list.-393

binary, the repository will be added to your live system's
/etc/apt/sources.list.d/ directory.

If such files exist, they will be picked up automatically.394

You should also put theGPG key used to sign the repository into395

config/archives/your-repository.key.{binary,chroot}

files.

Should you need custom APT pinning, such APT prefer-396

ences snippets can be placed in config/archives/your-

repository.pref.{binary,chroot} files and will be automat-
ically added to your live system's /etc/apt/preferences.d/

directory.

8.2 Choosing packages to install397

There are a number of ways to choose which packages live-398

build will install in your image, covering a variety of different
needs. You can simply name individual packages to install in a
package list. You can also use metapackages in those lists,
or select them using package control file fields. And finally,
you may place package files in your config/ tree, which is well
suited to testing of new or experimental packages before they
are available from a repository.

8.2.1 Package lists399

Package lists are a powerful way of expressing which pack-400

ages should be installed. The list syntax supports conditional
sections which makes it easy to build lists and adapt them for
use in multiple configurations. Package names may also be
injected into the list using shell helpers at build time.

Note: The behaviour of live-build when specifying a package401

that does not exist is determined by your choice of APT utility.
See ‹Choosing apt or aptitude› for more details.

8.2.2 Using metapackages 402

The simplest way to populate your package list is to use a 403

task metapackage maintained by your distribution. For exam-
ple:

404

$ lb config
$ echo task-gnome-desktop > config/package-lists/desktop.list.chroot

This supercedes the older predefined list method supported in 405

live-build 2.x. Unlike predefined lists, task metapackages
are not specific to the Live System project. Instead, they are
maintained by specialist working groups within the distribution
and therefore reflect the consensus of each group about which
packages best serve the needs of the intended users. They
also cover a much broader range of use cases than the prede-
fined lists they replace.

All task metapackages are prefixed task-, so a quick way to 406

determine which are available (though it may contain a handful
of false hits that match the name but aren't metapackages) is
to match on the package name with:

407

$ apt-cache search --names-only ^task-

In addition to these, you will find other metapackages with var- 408

ious purposes. Some are subsets of broader task packages,
like gnome-core, while others are individual specialized parts of
a Debian Pure Blend, such as the education-*metapackages.

30

Live Systems Manual

To list all metapackages in the archive, install the debtags pack-
age and list all packages with the role::metapackage tag as
follows:

409

$ debtags search role::metapackage

8.2.3 Local package lists410

Whether you list metapackages, individual packages, or a com-411

bination of both, all local package lists are stored in config/-

package-lists/. Since more than one list can be used, this
lends itself well to modular designs. For example, you may
decide to devote one list to a particular choice of desktop, an-
other to a collection of related packages that might as easily
be used on top of a different desktop. This allows you to ex-
periment with different combinations of sets of packages with a
minimum of fuss, sharing common lists between different live
image projects.

Package lists that exist in this directory need to have a .list412

suffix in order to be processed, and then an additional stage
suffix, .chroot or .binary to indicate which stage the list is
for.

Note: If you don't specify the stage suffix, the list will be used413

for both stages. Normally, you want to specify .list.chroot so
that the packages will only be installed in the live filesystem and
not have an extra copy of the .deb placed on the medium.

8.2.4 Local binary package lists414

To make a binary stage list, place a file suffixed with415

.list.binary in config/package-lists/. These pack-
ages are not installed in the live filesystem, but are included
on the live medium under pool/. You would typically use such
a list with one of the non-live installer variants. As mentioned
above, if you want this list to be the same as your chroot stage
list, simply use the .list suffix by itself.

8.2.5 Generated package lists 416

It sometimes happens that the best way to compose a list is to 417

generate it with a script. Any line starting with an exclamation
point indicates a command to be executed within the chroot
when the image is built. For example, onemight include the line
! grep-aptavail -n -sPackage -FPriority standard |sort

in a package list to produce a sorted list of available packages
with Priority: standard.

In fact, selecting packages with the grep-aptavail command 418

(from the dctrl-tools package) is so useful that live-build
provides a Packages helper script as a convenience. This script
takes two arguments: field and pattern. Thus, you can create
a list with the following contents:

419

$ lb config
$ echo '! Packages Priority standard' > config/package-lists/standard.←↩

list.chroot

8.2.6 Using conditionals inside package lists 420

Any of the live-build configuration variables stored in config/* 421

(minus the LB_ prefix) may be used in conditional statements
in package lists. Generally, this means any lb config op-
tion uppercased and with dashes changed to underscores. But

31

Live Systems Manual

in practice, it is only the ones that influence package selec-
tion that make sense, such as DISTRIBUTION, ARCHITECTURES
or ARCHIVE_AREAS.

For example, to install ia32-libs if the --architectures amd64422

is specified:

423

#if ARCHITECTURES amd64
ia32-libs
#endif

You may test for any one of a number of values, e.g. to424

install memtest86+ if either --architectures i386 or --

architectures amd64 is specified:

425

#if ARCHITECTURES i386 amd64
memtest86+
#endif

You may also test against variables that may contain more than426

one value, e.g. to install vrms if either contrib or non-free is
specified via --archive-areas:

427

#if ARCHIVE_AREAS contrib non-free
vrms
#endif

The nesting of conditionals is not supported.428

8.2.7 Removing packages at install time429

You can list packages in files with .list.chroot_live and430

.list.chroot_install suffixes inside the config/package-

lists directory. If both a live and an install list exist, the
packages in the .list.chroot_live list are removed with
a hook after the installation (if the user uses the installer).
The packages in the .list.chroot_install list are present
both in the live system and in the installed system. This is a
special tweak for the installer and may be useful if you have
--debian-installer live set in your config, and wish to
remove live system-specific packages at install time.

8.2.8 Desktop and language tasks 431

Desktop and language tasks are special cases that need some 432

extra planning and configuration. Live images are different from
Debian Installer images in this respect. In the Debian Installer,
if the medium was prepared for a particular desktop environ-
ment flavour, the corresponding task will be automatically in-
stalled. Thus, there are internal gnome-desktop, kde-desktop,
lxde-desktop and xfce-desktop tasks, none of which are of-
fered in tasksel's menu. Likewise, there are no menu entries
for tasks for languages, but the user's language choice during
the install influences the selection of corresponding language
tasks.

When developing a desktop live image, the image typically 433

boots directly to a working desktop, the choices of both desk-
top and default language having been made at build time, not
at run time as in the case of the Debian Installer. That's not to
say that a live image couldn't be built to support multiple desk-
tops or multiple languages and offer the user a choice, but that
is not live-build' s default behaviour.

Because there is no provision made automatically for language 434

tasks, which include such things as language-specific fonts and
input-method packages, if you want them, you need to specify
them in your configuration. For example, a GNOME desktop

32

Live Systems Manual

image containing support for German might include these task
metapackages:

435

$ lb config
$ echo "task-gnome-desktop task-laptop" >> config/package-lists/my.list←↩

.chroot
$ echo "task-german task-german-desktop task-german-gnome-desktop" >> ←↩

config/package-lists/my.list.chroot

8.2.9 Kernel flavour and version436

One or more kernel flavours will be included in your image by437

default, depending on the architecture. You can choose differ-
ent flavours via the --linux-flavours option. Each flavour is
suffixed to the default stub linux-image to form eachmetapack-
age name which in turn depends on an exact kernel package
to be included in your image.

Thus by default, an amd64 architecture image will include438

the linux-image-amd64 flavour metapackage, and an i386

architecture image will include the linux-image-486 and
linux-image-686-pae metapackages. At time of writing, these
packages depend on linux-image-3.2.0-4-amd64, linux-

image-3.2.0-4-486 and linux-image-3.2.0-4-686-pae,
respectively.

Whenmore than one kernel package version is available in your439

configured archives, you can specify a different kernel package
name stub with the --linux-packages option. For example,
supposing you are building an amd64 architecture image and
add the experimental archive for testing purposes so you can
install the linux-image-3.7-trunk-amd64 kernel. You would
configure that image as follows:

440

$ lb config --linux-packages linux-image-3.7-trunk
$ echo "deb http://ftp.debian.org/debian/ experimental main" > config/←↩

archives/experimental.list.chroot

8.2.10 Custom kernels 441

You can build and include your own custom kernels, so long 442

as they are integrated within the Debian package management
system. The live-build system does not support kernels not built
as .deb packages.

The proper and recommended way to deploy your own kernel 443

packages is to follow the instructions in the kernel-handbook.
Remember to modify the ABI and flavour suffixes appropriately,
then include a complete build of the linux and matching linux-
latest packages in your repository.

If you opt to build the kernel packages without the matching 444

metapackages, you need to specify an appropriate --linux-

packages stub as discussed in ‹Kernel flavour and version›.
As we explain in ‹Installing modified or third-party packages›,
it is best if you include your custom kernel packages in your
own repository, though the alternatives discussed in that sec-
tion work as well.

It is beyond the scope of this document to give advice on how to 445

customize your kernel. However, you must at least ensure your
configuration satisfies these minimum requirements:

• Use an initial ramdisk. 446

• Include the union filesystem module (i.e. usually aufs). 447

• Include any other filesystem modules required by your con- 448

figuration (i.e. usually squashfs).

33

Live Systems Manual

8.3 Installing modified or third-party packages 449

While it is against the philosophy of a live system, it may some-450

times be necessary to build a live systemwith modified versions
of packages that are in the Debian repository. This may be to
modify or support additional features, languages and branding,
or even to remove elements of existing packages that are un-
desirable. Similarly, “third-party” packages may be used to add
bespoke and/or proprietary functionality.

This section does not cover advice regarding building or451

maintaining modified packages. Joachim Breitner's `How
to fork privately' method from ‹http://www.joachim-breitner.de/blog/
archives/282-How-to-fork-privately.html› may be of interest, however.
The creation of bespoke packages is covered in the Debian
New Maintainers' Guide at ‹http://www.debian.org/doc/maint-guide/›
and elsewhere.

There are two ways of installing modified custom pack-452

ages:

• packages.chroot453

• Using a custom APT repository454

Using packages.chroot is simpler to achieve and useful for455

“one-off” customizations but has a number of drawbacks, while
using a custom APT repository is more time-consuming to set
up.

8.3.1 Using packages.chroot to install custom456

packages

To install a custom package, simply copy it to the config/-457

packages.chroot/ directory. Packages that are inside this di-
rectory will be automatically installed into the live system during
build - you do not need to specify them elsewhere.

Packages must be named in the prescribed way. One simple 458

way to do this is to use dpkg-name.

Using packages.chroot for installation of custom packages has 459

disadvantages:

• It is not possible to use secure APT. 460

• You must install all appropriate packages in the config/- 461

packages.chroot/ directory.

• It does not lend itself to storing live system configurations in 462

revision control.

8.3.2 Using an APT repository to install custom 463

packages

Unlike using packages.chroot, when using a custom APT 464

repository you must ensure that you specify the packages else-
where. See ‹Choosing packages to install› for details.

While it may seem unnecessary effort to create an APT reposi- 465

tory to install custom packages, the infrastructure can be easily
re-used at a later date to offer updates of the modified pack-
ages.

8.3.3 Custom packages and APT 466

live-build uses APT to install all packages into the live system 467

so will therefore inherit behaviours from this program. One rel-
evant example is that (assuming a default configuration) given
a package available in two different repositories with different
version numbers, APT will elect to install the package with the
higher version number.

Because of this, you may wish to increment the version num- 468

ber in your custom packages' debian/changelog files to ensure

34

http://www.joachim-breitner.de/blog/archives/282-How-to-fork-privately.html
http://www.joachim-breitner.de/blog/archives/282-How-to-fork-privately.html
http://www.debian.org/doc/maint-guide/

Live Systems Manual

that your modified version is installed over one in the official De-
bian repositories. This may also be achieved by altering the live
system's APT pinning preferences - see ‹APT pinning› for more
information.

8.4 Configuring APT at build time469

You can configure APT through a number of options applied470

only at build time. (APT configuration used in the running live
system may be configured in the normal way for live system
contents, that is, by including the appropriate configurations
through config/includes.chroot/.) For a complete list, look
for options starting with apt in the lb_config man page.

8.4.1 Choosing apt or aptitude471

You can elect to use either apt or aptitude when installing pack-472

ages at build time. Which utility is used is governed by the --apt
argument to lb config. Choose the method implementing the
preferred behaviour for package installation, the notable differ-
ence being how missing packages are handled.

• apt: With this method, if a missing package is specified, the473

package installation will fail. This is the default setting.

• aptitude: With this method, if a missing package is specified,474

the package installation will succeed.

8.4.2 Using a proxy with APT475

One commonly required APT configuration is to deal with476

building an image behind a proxy. You may specify your APT
proxy with the --apt-ftp-proxy or --apt-http-proxy options
as needed, e.g.

477

$ lb config --apt-http-proxy http://proxy/

8.4.3 Tweaking APT to save space 478

You may find yourself needing to save some space on the im- 479

age medium, in which case one or the other or both of the fol-
lowing options may be of interest.

If you don't want to include APT indices in the image, you can 480

omit those with:

481

$ lb config --apt-indices false

This will not influence the entries in /etc/apt/sources.list, 482

but merely whether /var/lib/apt contains the indices files or
not. The tradeoff is that APT needs those indices in order to
operate in the live system, so before performing apt-cache

search or apt-get install, for instance, the user must apt-
get update first to create those indices.

If you find the installation of recommended packages bloats 483

your image too much, provided you are prepared to deal with
the consequences discussed below, you may disable that de-
fault option of APT with:

484

$ lb config --apt-recommends false

The most important consequence of turning off recommends is 485

that live-boot and live-config themselves recommend some
packages that provide important functionality used by most Live

35

Live Systems Manual

configurations, such as user-setup which live-config recom-
mends and is used to create the live user. In all but the most ex-
ceptional circumstances you need to add back at least some of
these recommends to your package lists or else your image will
not work as expected, if at all. Look at the recommended pack-
ages for each of the live-* packages included in your build
and if you are not certain you can omit them, add them back
into your package lists.

The more general consequence is that if you don't install rec-486

ommended packages for any given package, that is, “pack-
ages that would be found together with this one in all but un-
usual installations” (Debian Policy Manual, section 7.2), some
packages that users of your Live system actually need may
be omitted. Therefore, we suggest you review the difference
turning off recommends makes to your packages list (see the
binary.packages file generated by lb build) and re-include
in your list any missing packages that you still want installed.
Alternatively, if you find you only want a small number of rec-
ommended packages left out, leave recommends enabled and
set a negative APT pin priority on selected packages to prevent
them from being installed, as explained in ‹APT pinning›.

8.4.4 Passing options to apt or aptitude487

If there is not a lb config option to alter APT's behaviour in the488

way you need, use --apt-options or --aptitude-options to
pass any options through to your configured APT tool. See the
man pages for apt and aptitude for details. Note that both op-
tions have default values that you will need to retain in addition
to any overrides you may provide. So, for example, suppose
you have included something from snapshot.debian.org for
testing purposes and want to specify Acquire::Check-Valid-

Until=false to make APT happy with the stale Release file,
you would do so as per the following example, appending the

new option after the default value --yes:

489

$ lb config --apt-options "--yes -oAcquire::Check-Valid-Until=false"

Please check the man pages to fully understand these options 490

and when to use them. This is an example only and should not
be construed as advice to configure your image this way. This
option would not be appropriate for, say, a final release of a live
image.

For more complicated APT configurations involving apt.conf 491

options you might want to create a config/apt/apt.conf file
instead. See also the other apt-* options for a few convenient
shortcuts for frequently needed options.

8.4.5 APT pinning 492

For background, please first read the apt_preferences(5)man 493

page. APT pinning can be configured either for build time, or
else for run time. For the former, create config/archives/-

.pref, config/archives/.pref.chroot, and config/apt/-

preferences. For the latter, create config/includes.chroot/-

etc/apt/preferences.

Let's say you are building a jessie live system but need all the 494

live packages that end up in the binary image to be installed
from sid at build time. You need to add sid to your APT
sources and pin the live packages from it higher, but all other
packages from it lower, than the default priority. Thus, only the
packages you want are installed from sid at build time and all
others are taken from the target system distribution, jessie .
The following will accomplish this:

495

36

Live Systems Manual

$ echo "deb http://mirror/debian/ sid main" > config/archives/sid.list.←↩
chroot

$ cat >> config/archives/sid.pref.chroot << EOF
Package: live-*
Pin: release n=sid
Pin-Priority: 600

Package: *
Pin: release n=sid
Pin-Priority: 1
EOF

Negative pin priorities will prevent a package from being in-496

stalled, as in the case where you do not want a package that is
recommended by another package. Suppose you are building
an LXDE image using task-lxde-desktop in config/package-

lists/desktop.list.chroot, but don't want the user prompted
to store wifi passwords in the keyring. This metapackage de-
pends on lxde-core, which recommends gksu, which in turn
recommends gnome-keyring. So you want to omit the recom-
mended gnome-keyring package. This can be done by adding
the following stanza to config/apt/preferences:

497

Package: gnome-keyring
Pin: version *
Pin-Priority: -1

37

Live Systems Manual

Customizing contents498

9. Customizing contents499

This chapter discusses fine-tuning customization of the live sys-500

tem contents beyond merely choosing which packages to in-
clude. Includes allow you to add or replace arbitrary files in
your live system image, hooks allow you to execute arbitrary
commands at different stages of the build and at boot time, and
preseeding allows you to configure packages when they are
installed by supplying answers to debconf questions.

9.1 Includes501

While ideally a live system would include files entirely provided502

by unmodified packages, it is sometimes convenient to provide
or modify some content by means of files. Using includes, it is
possible to add (or replace) arbitrary files in your live system im-
age. live-build provides two mechanisms for using them:

• Chroot local includes: These allow you to add or replace files503

to the chroot/Live filesystem. Please see ‹Live/chroot local
includes› for more information.

• Binary local includes: These allow you to add or replace files504

in the binary image. Please see ‹Binary local includes› for
more information.

Please see ‹Terms› for more information about the distinction505

between the “Live” and “binary” images.

9.1.1 Live/chroot local includes506

Chroot local includes can be used to add or replace files in the507

chroot/Live filesystem so that they may be used in the Live sys-
tem. A typical use is to populate the skeleton user directory

(/etc/skel) used by the Live system to create the live user's
home directory. Another is to supply configuration files that can
be simply added or replaced in the image without processing;
see ‹Live/chroot local hooks› if processing is needed.

To include files, simply add them to your config/in- 508

cludes.chroot directory. This directory corresponds to
the root directory / of the live system. For example, to add a
file /var/www/index.html in the live system, use:

509

$ mkdir -p config/includes.chroot/var/www
$ cp /path/to/my/index.html config/includes.chroot/var/www

Your configuration will then have the following layout: 510

511

-- config
[...]
|-- includes.chroot
| `-- var
| `-- www
| `-- index.html
[...]

Chroot local includes are installed after package installation so 512

that files installed by packages are overwritten.

9.1.2 Binary local includes 513

To include material such as documentation or videos on the 514

medium filesystem so that it is accessible immediately upon
insertion of the medium without booting the Live system, you
can use binary local includes. This works in a similar fash-
ion to chroot local includes. For example, suppose the files
~/video_demo.* are demo videos of the live system described

38

Live Systems Manual

by and linked to by an HTML index page. Simply copy the ma-
terial to config/includes.binary/ as follows:

515

$ cp ~/video_demo.* config/includes.binary/

These files will now appear in the root directory of the live516

medium.

9.2 Hooks517

Hooks allow commands to be performed in the chroot and bi-518

nary stages of the build in order to customize the image.

9.2.1 Live/chroot local hooks519

To run commands in the chroot stage, create a hook script520

with a .hook.chroot suffix containing the commands in the
config/hooks/ directory. The hook will run in the chroot after
the rest of your chroot configuration has been applied, so
remember to ensure your configuration includes all packages
and files your hook needs in order to run. See the example
chroot hook scripts for various common chroot customization
tasks provided in /usr/share/doc/live-build/examples/-

hooks which you can copy or symlink to use them in your own
configuration.

9.2.2 Boot-time hooks521

To execute commands at boot time, you can supply live-config522

hooks as explained in the “Customization” section of its man
page. Examine live-config' s own hooks provided in /lib/-

live/config/, noting the sequence numbers. Then provide

your own hook prefixed with an appropriate sequence number,
either as a chroot local include in config/includes.chroot/-

lib/live/config/, or as a custom package as discussed in
‹Installing modified or third-party packages›.

9.2.3 Binary local hooks 523

To run commands in the binary stage, create a hook script 524

with a .hook.binary suffix containing the commands in the
config/hooks/ directory. The hook will run after all other bi-
nary commands are run, but before binary_checksums, the
very last binary command. The commands in your hook do
not run in the chroot, so take care to not modify any files out-
side of the build tree, or you may damage your build system!
See the example binary hook scripts for various common bi-
nary customization tasks provided in /usr/share/doc/live-

build/examples/hooks which you can copy or symlink to use
them in your own configuration.

9.3 Preseeding Debconf questions 525

Files in the config/preseed/ directory suffixed with .cfg 526

followed by the stage (.chroot or .binary) are considered
to be debconf preseed files and are installed by live-build
using debconf-set-selections during the corresponding
stage.

For more information about debconf, please see debconf(7) in 527

the debconf package.

39

Live Systems Manual

Customizing run time behaviours528

10. Customizing run time behaviours529

All configuration that is done during run time is done by live-530

config. Here are some of the most common options of live-
config that users are interested in. A full list of all possibilities
can be found in the man page of live-config.

10.1 Customizing the live user531

One important consideration is that the live user is created by532

live-boot at boot time, not by live-build at build time. This not
only influences where materials relating to the live user are in-
troduced in your build, as discussed in ‹Live/chroot local in-
cludes›, but also any groups and permissions associated with
the live user.

You can specify additional groups that the live user will belong533

to by using any of the possibilities to configure live-config. For
example, to add the live user to the fuse group, you can either
add the following file in config/includes.chroot/etc/live/-

config/user-setup.conf:

534

LIVE_USER_DEFAULT_GROUPS="audio cdrom dip floppy video plugdev netdev ←↩
powerdev scanner bluetooth fuse"

or use live-config.user-default-groups=audio,cdrom,dip,floppy,video,plugdev,netdev,powerdev,scanner,bluetooth,fuse535

as a boot parameter.

It is also possible to change the default username “user” and the536

default password “live”. If you want to do that for any reason,
you can easily achieve it as follows:

To change the default username you can simply specify it in537

your config:

538

$ lb config --bootappend-live "boot=live components username=live-user"

One possible way of changing the default password is bymeans 539

of a hook as described in ‹Boot-time hooks›. In order to do
that you can use the “passwd” hook from /usr/share/doc/-

live-config/examples/hooks, prefix it accordingly (e.g. 2000-
passwd) and add it to config/includes.chroot/lib/live/-

config/

10.2 Customizing locale and language 540

When the live system boots, language is involved in two 541

steps:

• the locale generation 542

• setting the keyboard configuration 543

The default locale when building a Live system is 544

locales=en_US.UTF-8. To define the locale that should be gen-
erated, use the locales parameter in the --bootappend-live

option of lb config, e.g.

545

$ lb config --bootappend-live "boot=live components locales=de_CH.UTF←↩
-8"

Multiple locales may be specified as a comma-delimited 546

list.

This parameter, as well as the keyboard configuration pa- 547

rameters indicated below, can also be used at the kernel
command line. You can specify a locale by language_country

40

Live Systems Manual

(in which case the default encoding is used) or the full lan-
guage_country.encoding word. A list of supported locales
and the encoding for each can be found in /usr/share/i18n/-

SUPPORTED.

Both the console and X keyboard configuration are performed548

by live-config using the console-setup package. To con-
figure them, use the keyboard-layouts, keyboard-variants,
keyboard-options and keyboard-model boot parameters via
the --bootappend-live option. Valid options for these can be
found in /usr/share/X11/xkb/rules/base.lst. To find layouts
and variants for a given language, try searching for the English
name of the language and/or the country where the language
is spoken, e.g:

549

$ egrep -i '(^!|german.*switzerland)' /usr/share/X11/xkb/rules/base.lst
! model
! layout

ch German (Switzerland)
! variant

legacy ch: German (Switzerland, legacy)
de_nodeadkeys ch: German (Switzerland, eliminate dead keys)
de_sundeadkeys ch: German (Switzerland, Sun dead keys)
de_mac ch: German (Switzerland, Macintosh)

! option

Note that each variant lists the layout to which it applies in the550

description.

Often, only the layout needs to be configured. For example,551

to get the locale files for German and Swiss German keyboard
layout in X use:

552

$ lb config --bootappend-live "boot=live components locales=de_CH.UTF-8←↩
keyboard-layouts=ch"

However, for very specific use cases, you may wish to include 553

other parameters. For example, to set up a French system
with a French-Dvorak layout (called Bepo) on a TypeMatrix EZ-
Reach 2030 USB keyboard, use:

554

$ lb config --bootappend-live \
"boot=live components locales=fr_FR.UTF-8 keyboard-layouts=fr ←↩

keyboard-variants=bepo keyboard-model=tm2030usb"

Multiple values may be specified as comma-delimited lists 555

for each of the keyboard-* options, with the exception of
keyboard-model, which accepts only one value. Please
see the keyboard(5) man page for details and examples of
XKBMODEL, XKBLAYOUT, XKBVARIANT and XKBOPTIONS variables.
If multiple keyboard-variants values are given, they will
be matched one-to-one with keyboard-layouts values (see
setxkbmap(1) -variant option). Empty values are allowed;
e.g. to define two layouts, the default being US QWERTY and
the other being US Dvorak, use:

556

$ lb config --bootappend-live \
"boot=live components keyboard-layouts=us,us keyboard-variants=,←↩

dvorak"

10.3 Persistence 557

A live cd paradigm is a pre-installed system which runs from 558

read-only media, like a cdrom, where writes and modifications
do not survive reboots of the host hardware which runs it.

A live system is a generalization of this paradigm and thus sup- 559

ports other media in addition to CDs; but still, in its default be-

41

Live Systems Manual

haviour, it should be considered read-only and all the run-time
evolutions of the system are lost at shutdown.

`Persistence' is a common name for different kinds of solutions560

for saving across reboots some, or all, of this run-time evolution
of the system. To understand how it works it would be handy to
know that even if the system is booted and run from read-only
media, modifications to the files and directories are written on
writable media, typically a ram disk (tmpfs) and ram disks' data
do not survive reboots.

The data stored on this ramdisk should be saved on a writable561

persistent medium like local storage media, a network share or
even a session of a multisession (re)writable CD/DVD. All these
media are supported in live systems in different ways, and all
but the last one require a special boot parameter to be specified
at boot time: persistence.

If the boot parameter persistence is set (and nopersistence is562

not set), local storage media (e.g. hard disks, USB drives) will
be probed for persistence volumes during boot. It is possible to
restrict which types of persistence volumes to use by specifying
certain boot parameters described in the live-boot(7) man page.
A persistence volume is any of the following:

• a partition, identified by its GPT name.563

• a filesystem, identified by its filesystem label.564

• an image file located on the root of any readable filesystem565

(even an NTFS partition of a foreign OS), identified by its file-
name.

The volume label for overlays must be persistence but it will566

be ignored unless it contains in its root a file named persis-

tence.conf which is used to fully customize the volume's per-
sistence, this is to say, specifying the directories that you want
to save in your persistence volume after a reboot. See ‹The
persistence.conf file› for more details.

Here are some examples of how to prepare a volume to be used 567

for persistence. It can be, for instance, an ext4 partition on a
hard disk or on a usb key created with, e.g.:

568

mkfs.ext4 -L persistence /dev/sdb1

See also ‹Using the space left on a USB stick›. 569

If you already have a partition on your device, you could just 570

change the label with one of the following:

571

tune2fs -L persistence /dev/sdb1 # for ext2,3,4 filesystems

Here's an example of how to create an ext4-based image file to 572

be used for persistence:

573

$ dd if=/dev/null of=persistence bs=1 count=0 seek=1G # for a 1GB sized←↩
image file

$ /sbin/mkfs.ext4 -F persistence

Once the image file is created, as an example, to make /usr 574

persistent but only saving the changes you make to that direc-
tory and not all the contents of /usr, you can use the “union”
option. If the image file is located in your home directory, copy
it to the root of your hard drive's filesystem and mount it in /mnt

as follows:

575

cp persistence /
mount -t ext4 /persistence /mnt

42

Live Systems Manual

Then, create the persistence.conf file adding content and un- 576

mount the image file.

577

echo "/usr union" >> /mnt/persistence.conf
umount /mnt

Now, reboot into your live mediumwith the boot parameter “per-578

sistence”.

10.3.1 The persistence.conf file579

A volume with the label persistence must be configured by580

means of the persistence.conf file to make arbitrary directo-
ries persistent. That file, located on the volume's filesystem
root, controls which directories it makes persistent, and in which
way.

How custom overlay mounts are configured is described in full581

detail in the persistence.conf(5) man page, but a simple exam-
ple should be sufficient for most uses. Let's say we want to
make our home directory and APT cache persistent in an ext4
filesystem on the /dev/sdb1 partition:

582

mkfs.ext4 -L persistence /dev/sdb1
mount -t ext4 /dev/sdb1 /mnt
echo "/home" >> /mnt/persistence.conf
echo "/var/cache/apt" >> /mnt/persistence.conf
umount /mnt

Then we reboot. During the first boot the contents of /home583

and /var/cache/aptwill be copied into the persistence volume,
and from then on all changes to these directories will live in the
persistence volume. Please note that any paths listed in the

persistence.conf file cannot contain white spaces or the spe-
cial . and .. path components. Also, neither /lib, /lib/live
(or any of their sub-directories) nor / can be made persistent
using custom mounts. As a workaround for this limitation you
can add / union to your persistence.conf file to achieve full
persistence.

10.3.2 Using more than one persistence store 584

There are different methods of using multiple persistence store 585

for different use cases. For instance, using several volumes at
the same time or selecting only one, among various, for very
specific purposes.

Several different custom overlay volumes (with their own per- 586

sistence.conf files) can be used at the same time, but if sev-
eral volumes make the same directory persistent, only one of
them will be used. If any two mounts are “nested” (i.e. one
is a sub-directory of the other) the parent will be mounted be-
fore the child so no mount will be hidden by the other. Nested
custom mounts are problematic if they are listed in the same
persistence.conf file. See the persistence.conf(5) man page
for how to handle that case if you really need it (hint: you usually
don't).

One possible use case: If you wish to store the user data i.e. 587

/home and the superuser data i.e. /root in different partitions,
create two partitions with the persistence label and add a per-

sistence.conf file in each one like this, # echo “/home” >

persistence.conf for the first partition that will save the user's
files and # echo “/root” > persistence.conf for the second
partition which will store the superuser's files. Finally, use the
persistence boot parameter.

If a user would need multiple persistence store of the same 588

type for different locations or testing, such as private and

43

Live Systems Manual

work, the boot parameter persistence-label used in con-
junction with the boot parameter persistence will allow for
multiple but unique persistence media. An example would
be if a user wanted to use a persistence partition labeled
private for personal data like browser bookmarks or other
types, they would use the boot parameters: persistence

persistence-label=private. And to store work related
data, like documents, research projects or other types, they
would use the boot parameters: persistence persistence-

label=work.

It is important to remember that each of these volumes, private589

and work, also needs a persistence.conf file in its root. The
live-bootman page contains more information about how to use
these labels with legacy names.

10.4 Using persistence with encryption590

Using the persistence feature means that some sensible data591

might get exposed to risk. Especially if the persistent data is
stored on a portable device such as a usb stick or an external
hard drive. That is when encryption comes in handy. Even if the
entire procedure might seem complicated because of the num-
ber of steps to be taken, it is really easy to handle encrypted
partitions with live-boot. In order to use luks , which is the sup-
ported encryption type, you need to install cryptsetup both on
the machine you are creating the encrypted partition with and
also in the live system you are going to use the encrypted per-
sistent partition with.

To install cryptsetup on your machine:592

593

apt-get install cryptsetup

To install cryptsetup in your live system, add it to your package- 594

lists:

595

$ lb config
$ echo "cryptsetup" > config/package-lists/encryption.list.chroot

Once you have your live system with cryptsetup, you basically 596

only need to create a new partition, encrypt it and boot with the
persistence and persistence-encryption=luks parameters.
We could have already anticipated this step and added the boot
parameters following the usual procedure:

597

$ lb config --bootappend-live "boot=live components persistence ←↩
persistence-encryption=luks"

Let's go into the details for all of those who are not familiar with 598

encryption. In the following example we are going to use a par-
tition on a usb stick which corresponds to /dev/sdc2. Please
be warned that you need to determine which partition is the one
you are going to use in your specific case.

The first step is plugging in your usb stick and determine which 599

device it is. The recommended method of listing devices in live-
manual is using ls -l /dev/disk/by-id. After that, create
a new partition and then, encrypt it with a passphrase as fol-
lows:

600

cryptsetup --verify-passphrase luksFormat /dev/sdc2

Then open the luks partition in the virtual device mapper. Use 601

any name you like. We use live here as an example:

602

44

Live Systems Manual

cryptsetup luksOpen /dev/sdc2 live

The next step is filling the device with zeros before creating the603

filesystem:

604

dd if=/dev/zero of=/dev/mapper/live

Now, we are ready to create the filesystem. Notice that we are605

adding the label persistence so that the device is mounted as
persistence store at boot time.

606

mkfs.ext4 -L persistence /dev/mapper/live

To continue with our setup, we need to mount the device, for607

example in /mnt.

608

mount /dev/mapper/live /mnt

And create the persistence.conf file in the root of the parti-609

tion. This is, as explained before, strictly necessary. See ‹The
persistence.conf file›.

610

echo "/ union" > /mnt/persistence.conf

Then unmount the mount point:611

612

umount /mnt

And optionally, although it might be a good way of securing the 613

data we have just added to the partition, we can close the de-
vice:

614

cryptsetup luksClose live

Let's summarize the process. So far, we have created an en- 615

cryption capable live system, which can be copied to a usb stick
as explained in ‹Copying an ISO hybrid image to a USB stick›.
We have also created an encrypted partition, which can be lo-
cated in the same usb stick to carry it around and we have con-
figured the encrypted partition to be used as persistence store.
So now, we only need to boot the live system. At boot time,
live-boot will prompt us for the passphrase and will mount the
encrypted partition to be used for persistence.

45

Live Systems Manual

Customizing the binary image616

11. Customizing the binary image617

11.1 Bootloaders618

live-build uses syslinux and some of its derivatives (depending619

on the image type) as bootloaders by default. They can be
easily customized to suit your needs.

In order to use a full theme, copy /usr/share/live/build/-620

bootloaders into config/bootloaders and edit the files in
there. If you do not want to bother modifying all supported
bootloader configurations, only providing a local customized
copy of one of the bootloaders, e.g. isolinux in config/-

bootloaders/isolinux is enough too, depending on your use
case.

When modifying one of the default themes, if you want to use a621

personalized background image that will be displayed together
with the boot menu, add a splash.png picture of 640x480 pixels.
Then, remove the splash.svg file.

There are many possibilities when it comes to making changes.622

For instance, syslinux derivatives are configured by default with
a timeout of 0 (zero) which means that they will pause indefi-
nitely at their splash screen until you press a key.

To modify the boot timeout of a default iso-hybrid image just623

edit a default isolinux.cfg file specifying the timeout in units
of 1/10 seconds. A modified isolinux.cfg to boot after five
seconds would be similar to this:

624

include menu.cfg
default vesamenu.c32
prompt 0
timeout 50

11.2 ISO metadata 625

When creating an ISO9660 binary image, you can use the fol- 626

lowing options to add various textual metadata for your image.
This can help you easily identify the version or configuration of
an image without booting it.

• LB_ISO_APPLICATION/--iso-application NAME: This should 627

describe the application that will be on the image. The maxi-
mum length for this field is 128 characters.

• LB_ISO_PREPARER/--iso-preparer NAME: This should de- 628

scribe the preparer of the image, usually with some contact
details. The default for this option is the live-build version
you are using, which may help with debugging later. The
maximum length for this field is 128 characters.

• LB_ISO_PUBLISHER/--iso-publisher NAME: This should de- 629

scribe the publisher of the image, usually with some contact
details. The maximum length for this field is 128 characters.

• LB_ISO_VOLUME/--iso-volume NAME: This should specify the 630

volume ID of the image. This is used as a user-visible label
on some platforms such asWindows and Apple Mac OS. The
maximum length for this field is 32 characters.

46

Live Systems Manual

Customizing Debian Installer631

12. Customizing Debian Installer632

Live system images can be integrated with Debian Installer.633

There are a number of different types of installation, varying
in what is included and how the installer operates.

Please note the careful use of capital letters when referring to634

the “Debian Installer” in this section - when used like this we
refer explicitly to the official installer for the Debian system, not
anything else. It is often seen abbreviated to “d-i”.

12.1 Types of Debian Installer635

The three main types of installer are:636

“Normal” Debian Installer : This is a normal live system image637

with a separate kernel and initrd which (when selected from
the appropriate bootloader) launches into a standard Debian
Installer instance, just as if you had downloaded a CD image
of Debian and booted it. Images containing a live system and
such an otherwise independent installer are often referred to as
“combined images”.

On such images, Debian is installed by fetching and installing638

.deb packages using debootstrap, from local media or some
network-based network, resulting in a default Debian system
being installed to the hard disk.

This whole process can be preseeded and customized in a639

number of ways; see the relevant pages in the Debian Installer
manual for more information. Once you have a working pre-
seeding file, live-build can automatically put it in the image and
enable it for you.

“Live” Debian Installer : This is a live system image with a640

separate kernel and initrd which (when selected from the ap-
propriate bootloader) launches into an instance of the Debian
Installer.

Installation will proceed in an identical fashion to the “normal” 641

installation described above, but at the actual package instal-
lation stage, instead of using debootstrap to fetch and install
packages, the live filesystem image is copied to the target. This
is achieved with a special udeb called live-installer.

After this stage, the Debian Installer continues as normal, in- 642

stalling and configuring items such as bootloaders and local
users, etc.

Note: to support both normal and live installer entries in the 643

bootloader of the same live medium, you must disable live-
installer by preseeding live-installer/enable=false.

“Desktop” Debian Installer : Regardless of the type of Debian 644

Installer included, d-i can be launched from the Desktop by
clicking on an icon. This is user friendlier in some situations. In
order tomake use of this, the debian-installer-launcher package
needs to be included.

Note that by default, live-build does not include Debian Installer 645

images in the images, it needs to be specifically enabled with
lb config. Also, please note that for the “Desktop” installer to
work, the kernel of the live system must match the kernel d-i
uses for the specified architecture. For example:

646

$ lb config --architectures i386 --linux-flavours 486 \
--debian-installer live

$ echo debian-installer-launcher >> config/package-lists/my.list.chroot

47

Live Systems Manual

12.2 Customizing Debian Installer by preseeding 647

As described in the Debian Installer Manual, Appendix B at ‹http:648

//www.debian.org/releases/stable/i386/apb.html›, “Preseeding provides a
way to set answers to questions asked during the installation
process, without having to manually enter the answers while
the installation is running. This makes it possible to fully au-
tomate most types of installation and even offers some fea-
tures not available during normal installations.” This kind of
customization is best accomplished with live-build by placing
the configuration in a preseed.cfg file included in config/-

includes.installer/. For example, to preseed setting the lo-
cale to en_US:

649

$ echo "d-i debian-installer/locale string en_US" \
>> config/includes.installer/preseed.cfg

12.3 Customizing Debian Installer content650

For experimental or debugging purposes, you might want to in-651

clude locally built d-i component udeb packages. Place these
in config/packages.binary/ to include them in the image. Ad-
ditional or replacement files and directories may be included in
the installer initrd as well, in a similar fashion to ‹Live/chroot
local includes›, by placing the material in config/includes.-

installer/.

48

http://www.debian.org/releases/stable/i386/apb.html
http://www.debian.org/releases/stable/i386/apb.html
http://www.debian.org/releases/stable/i386/apb.html

Live Systems Manual

Project652

49

Live Systems Manual

Contributing to the project653

13. Contributing to the project654

When submitting a contribution, please clearly identify its copy-655

right holder and include any applicable licensing statement.
Note that to be accepted, the contribution must be licensed un-
der the same license as the rest of the documents, namely, GPL
version 3 or later.

Contributions to the project, such as translations and patches,656

are greatly welcome. Anyone can directly commit to the reposi-
tories, however, we ask you to send bigger changes to the mail-
ing list to discuss them first. See the section ‹Contact› for more
information.

The Live Systems Project uses Git as version control system657

and source code management. As explained in ‹Git repos-
itories› there are two main development branches: debian
and debian-next . Everybody can commit to the debian-next
branches of the live-boot, live-build, live-config, live-images,
live-manual and live-tools repositories.

However, there are certain restrictions. The server will658

reject:

• Non fast-forward pushes.659

• Merge commits.660

• Adding or removing tags or branches.661

Even though all commits might be revised, we ask you to use662

your common sense andmake good commits with good commit
messages.

• Write commit messages that consist of complete, meaningful663

sentences in English, starting with a capital letter and ending
with a full stop. Usually, these will start with the form “Fixing/-
Adding/Removing/Correcting/Translating/...”.

• Write good commit messages. The first line must be an ac- 664

curate summary of the contents of the commit which will be
included in the changelog. If you need to make some fur-
ther explanations, write them below leaving a blank line af-
ter the first one and then another blank line after each para-
graph. Lines of paragraphs should not exceed 80 characters
in length.

• Commit atomically, this is to say, do not mix unrelated things 665

in the same commit. Make one different commit for each
change you make.

13.1 Making changes 666

In order to push to the repositories, youmust follow the following 667

procedure. Here we use live-manual as an example so replace
it with the name of the repository you want to work with. For de-
tailed information on how to edit live-manual see ‹Contributing
to this document›.

• Fetch the public commit key: 668

669

$ mkdir -p ~/.ssh/keys
$ wget http://live-systems.org/other/keys/git@live-systems.org -O ~/.←↩

ssh/keys/git@live-systems.org
$ wget http://live-systems.org/other/keys/git@live-systems.org.pub -O ←↩

~/.ssh/keys/git@live-systems.org.pub
$ chmod 0600 ~/.ssh/keys/git@live-systems.org*

• Add the following section to your openssh-client config: 670

671

$ cat >> ~/.ssh/config << EOF
Host live-systems.org

Hostname live-systems.org
User git

50

Live Systems Manual

IdentitiesOnly yes
IdentityFile ~/.ssh/keys/git@live-systems.org

EOF

• Check out a clone of live-manual through ssh:672

673

$ git clone git@live-systems.org:/live-manual.git
$ cd live-manual && git checkout debian-next

• Make sure you have Git author and email set:674

675

$ git config user.name "John Doe"
$ git config user.email john@example.org

Important: Remember that you should commit any changes676

on the debian-next branch.

• Make your changes. In this example you would first write a677

new section dealing with applying patches and then prepare
to commit adding the files and writing your commit message
like this:

678

$ git commit -a -m "Adding a section on applying patches."

• Push the commit to the server:679

680

$ git push

51

Live Systems Manual

Reporting bugs681

14. Reporting bugs682

Live systems are far from being perfect, but we want to make683

it as close as possible to perfect - with your help. Do not hesi-
tate to report a bug. It is better to fill a report twice than never.
However, this chapter includes recommendations on how to file
good bug reports.

For the impatient:684

• Always check first the image status updates on our homepage685

at ‹http://live-systems.org/› for known issues.

• Before submitting a bug report always try to reproduce the686

bug with the most recent versions of the branch of live-
build, live-boot, live-config and live-tools that you're using
(like the newest 4.x version of live-build if you're using live-
build 4).

• Try to give as specific information as possible about the687

bug. This includes (at least) the version of live-build, live-
boot, live-config, and live-tools used and the distribution of
the live system you are building.

14.1 Known issues688

Since Debian testing and Debian unstable distributions are689

moving targets, when you specify either of them as the target
system distribution, a successful build may not always be pos-
sible.

If this causes too much difficulty for you, do not build a system690

based on testing or unstable , but rather, use stable . live-
build always defaults to the stable release.

Currently known issues are listed under the section `status' on691

our homepage at ‹http://live-systems.org/›.

It is out of the scope of this manual to train you to correctly 692

identify and fix problems in packages of the development distri-
butions, however, there are two things you can always try: If a
build fails when the target distribution is testing , try unstable .
If unstable does not work either, revert to testing and pin the
newer version of the failing package from unstable (see ‹APT
pinning› for details).

14.2 Rebuild from scratch 693

To ensure that a particular bug is not caused by an uncleanly 694

built system, please always rebuild the whole live system from
scratch to see if the bug is reproducible.

14.3 Use up-to-date packages 695

Using outdated packages can cause significant problems when 696

trying to reproduce (and ultimately fix) your problem. Make sure
your build system is up-to-date and any packages included in
your image are up-to-date as well.

14.4 Collect information 697

Please provide enough information with your report. Include, at 698

least, the exact version of live-build where the bug is encoun-
tered and the steps to reproduce it. Please use your common
sense and provide any other relevant information if you think
that it might help in solving the problem.

To make the most out of your bug report, we require at least the 699

following information:

• Architecture of the host system 700

52

http://live-systems.org/
http://live-systems.org/

Live Systems Manual

• Distribution of the host system701

• Version of live-build on the host system702

• Version of Python on the host system703

• Version of debootstrap and/or cdebootstrap on the host sys-704

tem

• Architecture of the live system705

• Distribution of the live system706

• Version of live-boot on the live system707

• Version of live-config on the live system708

• Version of live-tools on the live system709

You can generate a log of the build process by using the710

tee command. We recommend doing this automatically with
an auto/build script (see ‹Managing a configuration› for
details).

711

lb build 2>&1 | tee build.log

At boot time, live-boot and live-config store their logfiles in /-712

var/log/live/. Check them for error messages.

Additionally, to rule out other errors, it is always a good idea713

to tar up your config/ directory and upload it somewhere (do
not send it as an attachment to the mailing list), so that we can
try to reproduce the errors you encountered. If this is difficult
(e.g. due to size) you can use the output of lb config --dump

which produces a summary of your config tree (i.e. lists files in
subdirectories of config/ but does not include them).

Remember to send in any logs that were produced with English714

locale settings, e.g. run your live-build commands with a lead-
ing LC_ALL=C or LC_ALL=en_US.

14.5 Isolate the failing case if possible 715

If possible, isolate the failing case to the smallest possible 716

change that breaks. It is not always easy to do this so if you
cannot manage it for your report, do not worry. However, if
you plan your development cycle well, using small enough
change sets per iteration, you may be able to isolate the
problem by constructing a simpler `base' configuration that
closely matches your actual configuration plus just the broken
change set added to it. If you have a hard time sorting out
which of your changes broke, it may be that you are including
too much in each change set and should develop in smaller
increments.

14.6 Use the correct package to report the bug 717

against

If you do not know what component is responsible for the bug 718

or if the bug is a general bug concerning live systems, you can
fill a bug against the debian-live pseudo-package.

However, we would appreciate it if you try to narrow it down 719

according to where the bug appears.

14.6.1 At build time while bootstrapping 720

live-build first bootstraps a basic Debian system with deboot- 721

strap or cdebootstrap. Depending on the bootstrapping tool
used and the Debian distribution it is bootstrapping, it may fail.
If a bug appears here, check if the error is related to a specific
Debian package (most likely), or if it is related to the bootstrap-
ping tool itself.

In both cases, this is not a bug in the live system, but rather 722

in Debian itself and probably we cannot fix it directly. Please

53

Live Systems Manual

report such a bug against the bootstrapping tool or the failing
package.

14.6.2 At build time while installing packages723

live-build installs additional packages from the Debian archive724

and depending on the Debian distribution used and the daily
archive state, it can fail. If a bug appears here, check if the
error is also reproducible on a normal system.

If this is the case, this is not a bug in the live system, but rather725

in Debian - please report it against the failing package. Running
debootstrap separately from the Live system build or running lb
bootstrap --debug will give you more information.

Also, if you are using a local mirror and/or any sort of proxy726

and you are experiencing a problem, please always reproduce
it first by bootstrapping from an official mirror.

14.6.3 At boot time727

If your image does not boot, please report it to the mailing list728

together with the information requested in ‹Collect information›.
Do not forget to mention, how/when the image failed exactly,
whether using virtualization or real hardware. If you are using
a virtualization technology of any kind, please always run it on
real hardware before reporting a bug. Providing a screenshot
of the failure is also very helpful.

14.6.4 At run time729

If a package was successfully installed, but fails while actually730

running the Live system, this is probably a bug in the live sys-
tem. However:

14.7 Do the research 731

Before filing the bug, please search the web for the particu- 732

lar error message or symptom you are getting. As it is highly
unlikely that you are the only person experiencing a particular
problem. There is always a chance that it has been discussed
elsewhere and a possible solution, patch, or workaround has
been proposed.

You should pay particular attention to the live systems mailing 733

list, as well as the homepage, as these are likely to contain the
most up-to-date information. If such information exists, always
include the references to it in your bug report.

In addition, you should check the current bug lists for live-build, 734

live-boot, live-config and live-tools to see whether something
similar has already been reported.

14.8 Where to report bugs 735

The Live Systems Project keeps track of all bugs in the Bug 736

Tracking System (BTS). For information on how to use the sys-
tem, please see ‹http://bugs.debian.org/›. You can also submit the
bugs by using the reportbug command from the package with
the same name.

In general, you should report build time errors against the live- 737

build package, boot time errors against live-boot, and run time
errors against live-config. If you are unsure of which package
is appropriate or need more help before submitting a bug re-
port, please report it against the debian-live pseudo-package.
We will then take care about it and reassign it where appropri-
ate.

Please note that bugs found in distributions derived from De- 738

bian (such as Ubuntu and others) should not be reported to

54

http://bugs.debian.org/

Live Systems Manual

the Debian BTS unless they can be also reproduced on a De-
bian system using official Debian packages.

55

Live Systems Manual

Coding Style739

15. Coding Style740

This chapter documents the coding style used in live sys-741

tems.

15.1 Compatibility742

• Don't use syntax or semantics that are unique to the Bash743

shell. For example, the use of array constructs.

• Only use the POSIX subset - for example, use $(foo) over744

`foo`.

• You can check your scripts with `sh -n' and `checkbashisms'.745

• Make sure all shell code runs with `set -e'.746

15.2 Indenting747

• Always use tabs over spaces.748

15.3 Wrapping749

• Generally, lines are 80 chars at maximum.750

• Use the “Linux style” of line breaks:751

Bad:752

753

if foo; then
bar

fi

Good:754

755

if foo
then

bar
fi

• The same holds for functions: 756

Bad: 757

758

Foo () {
bar

}

Good: 759

760

Foo ()
{

bar
}

15.4 Variables 761

• Variables are always in capital letters. 762

• Variables used in live-build always start with LB_ prefix. 763

• Internal temporary variables in live-build should start with the 764

<=underscore>LB_ prefix.

• Local variables start with live-build <=underscore><=underscore>LB_765

prefix.

56

Live Systems Manual

• Variables in connection to a boot parameter in live-config start 766

with LIVE_.

• All other variables in live-config start with _ prefix.767

• Use braces around variables; e.g. write ${FOO} instead of768

$FOO.

• Always protect variables with quotes to respect potential769

whitespaces: write “${FOO}” not ${FOO}.

• For consistency reasons, always use quotes when assigning770

values to variables:

Bad:771

772

FOO=bar

Good:773

774

FOO="bar"

• If multiple variables are used, quote the full expression:775

Bad:776

777

if [-f "${FOO}"/foo/"${BAR}"/bar]
then

foobar
fi

Good:778

779

if [-f "${FOO}/foo/${BAR}/bar"]
then

foobar
fi

15.5 Miscellaneous 780

• Use “|” (without the surround quotes) as a separator in calls 781

to sed, e.g. “sed -e `s|'” (without “").

• Don't use the test command for comparisons or tests, use 782

“[” “]” (without “"); e.g. ”if [-x /bin/foo]; ...“ and not
”if test -x /bin/foo; ...”.

• Use case wherever possible over test, as it's easier to read 783

and faster in execution.

• Use capitalized names for functions to limit messing with the 784

users environment.

57

Live Systems Manual

Procedures785

16. Procedures786

This chapter documents the procedures within the Live Sys-787

tems Project for various tasks that need cooperation with other
teams in Debian.

16.1 Major Releases788

Releasing a new stable major version of Debian includes a lot789

of different teams working together to make it happen. At some
point, the Live team comes in and builds live system images.
The requirements to do this are:

• A mirror containing the released versions for the debian and790

debian-security archives which the debian-live buildd can ac-
cess.

• The names of the image need to be known (e.g. debian-live-791

VERSION-ARCH-FLAVOUR.iso).

• The data from debian-cd needs to be synced (udeb exclude792

lists).

• Images are built and mirrored on cdimage.debian.org.793

16.2 Point Releases794

• Again, we need updated mirrors of debian and debian-795

security.

• Images are built and mirrored on cdimage.debian.org.796

• Send announcement mail.797

16.2.1 Last Point Release of a Debian Release798

Remember to adjust both chroot and binary mirrors when build- 799

ing the last set of images for a Debian release after it has been
moved away from ftp.debian.org to archive.debian.org. That
way, old prebuilt live images are still useful without user modi-
fications.

16.2.2 Point release announcement template 800

An announcement mail for point releases can be generated us- 801

ing the template below and the following command:

802

$ sed \
-e 's|@MAJOR@|7.0|g' \
-e 's|@MINOR@|7.0.1|g' \
-e 's|@CODENAME@|wheezy|g' \
-e 's|@ANNOUNCE@|2013/msgXXXXX.html|g'

Please check the mail carefully before sending and pass it to 803

others for proof-reading.

804

Updated Live @MAJOR@: @MINOR@ released

The Live Systems Project is pleased to announce the @MINOR@ update of ←↩
the

Live images for the stable distribution Debian @MAJOR@ (codename "←↩
@CODENAME@").

The images are available for download at:

<http://live-systems.org/cdimage/release/current/>

and later at:

<http://cdimage.debian.org/cdimage/release/current-live/>

58

Live Systems Manual

This update includes the changes of the Debian @MINOR@ release:

<http://lists.debian.org/debian-announce/@ANNOUNCE@>

Additionally it includes the following Live-specific changes:

* [INSERT LIVE-SPECIFIC CHANGE HERE]
* [INSERT LIVE-SPECIFIC CHANGE HERE]
* [LARGER ISSUES MAY DESERVE THEIR OWN SECTION]

About Live Systems

The Live Systems Project produces the tools used to build official
live systems and the official live images themselves for Debian.

About Debian

The Debian Project is an association of Free Software developers who
volunteer their time and effort in order to produce the completely free
operating system Debian.

Contact Information

For further information, please visit the Live Systems web pages at
<http://live-systems.org/>, or contact the Live Systems team at
<debian-live@lists.debian.org>.

59

Live Systems Manual

Git repositories805

17. Git repositories806

The list of all the available repositories of the Live Systems807

Project can be found at ‹http://live-systems.org/gitweb/›. The project's
git URLs have the form: protocol://live-systems.org/git/-
repository. Thus, in order to clone live-manual read-only,
launch:

808

$ git clone git://live-systems.org/git/live-manual.git

Or,809

810

$ git clone https://live-systems.org/git/live-manual.git

Or,811

812

$ git clone http://live-systems.org/git/live-manual.git

The cloning addresses with write permission have the form:813

git@live-systems.org:/repository.

So, again, to clone live-manual over ssh you must type:814

815

$ git clone git@live-systems.org:live-manual.git

The git tree is made up of several different branches. The de-816

bian and the debian-next branches are particularly notewor-
thy because they contain the actual work that will eventually be
included in each new release.

After cloning any of the existing repositories, you will be on the 817

debian branch. This is appropriate to take a look at the state of
the project's latest release but before starting work it is crucial
to switch to the debian-next branch. To do so:

818

$ git checkout debian-next

The debian-next branch, which is not always fast-forward, is 819

where all the changes are committed first before being merged
into the debian branch. To make an analogy, it is like a testing
ground. If you are working on this branch and need to pull,
you will have to do a git pull --rebase so that your local
modifications are staged while pulling from the server and then
your changes will be put on top of it all.

17.1 Handling multiple repositories 820

If you intend to clone several of the live systems repositories 821

and want to switch to the debian-next branch right away to
check the latest code, write a patch or contribute with a transla-
tion you ought to know that the git server provides a mrcon-

fig file to ease the handling of multiple repositories. In or-
der to use it you need to install the mr package and after that,
launch:

822

$ mr bootstrap http://live-systems.org/other/mr/mrconfig

This command will automatically clone and checkout to the 823

60

http://live-systems.org/gitweb/

Live Systems Manual

debian-next branch the development repositories of the De-
bian packages produced by the project. These include, among
others, the live-images repository, which contains the configu-
rations used for the prebuilt images that the project publishes
for general use. For more information on how to use this repos-
itory, see ‹Clone a configuration published via Git›

61

Live Systems Manual

Examples824

62

Live Systems Manual

Examples825

18. Examples826

This chapter covers example builds for specific use cases with827

live systems. If you are new to building your own live system
images, we recommend you first look at the three tutorials in
sequence, as each one teaches new techniques that will help
you use and understand the remaining examples.

18.1 Using the examples828

To use these examples you need a system to build them on829

that meets the requirements listed in ‹Requirements› and has
live-build installed as described in ‹Installing live-build›.

Note that, for the sake of brevity, in these examples we do not830

specify a local mirror to use for the build. You can speed up
downloads considerably if you use a local mirror. You may
specify the options when you use lb config, as described
in ‹Distribution mirrors used at build time›, or for more con-
venience, set the default for your build system in /etc/live/-

build.conf. Simply create this file and in it, set the correspond-
ing LB_MIRROR_* variables to your preferred mirror. All other
mirrors used in the build will be defaulted from these values.
For example:

831

LB_MIRROR_BOOTSTRAP="http://mirror/debian/"
LB_MIRROR_CHROOT_SECURITY="http://mirror/debian-security/"
LB_MIRROR_CHROOT_BACKPORTS="http://mirror/debian-backports/"

18.2 Tutorial 1: A default image832

Use case: Create a simple first image, learning the basics of833

live-build.

In this tutorial, we will build a default ISO hybrid live system 834

image containing only base packages (no Xorg) and some
live system support packages, as a first exercise in using
live-build.

You can't get much simpler than this: 835

836

$ mkdir tutorial1 ; cd tutorial1 ; lb config

Examine the contents of the config/ directory if you wish. You 837

will see stored here a skeletal configuration, ready to customize
or, in this case, use immediately to build a default image.

Now, as superuser, build the image, saving a log as you build 838

with tee.

839

lb build 2>&1 | tee build.log

Assuming all goes well, after a while, the current directory will 840

contain live-image-i386.hybrid.iso. This ISO hybrid image
can be booted directly in a virtual machine as described in ‹Test-
ing an ISO image with Qemu› and ‹Testing an ISO image with
VirtualBox›, or else imaged onto optical media or a USB flash
device as described in ‹Burning an ISO image to a physical
medium› and ‹Copying an ISO hybrid image to a USB stick›,
respectively.

18.3 Tutorial 2: A web browser utility 841

Use case: Create a web browser utility image, learning how 842

to apply customizations.

63

Live Systems Manual

In this tutorial, we will create an image suitable for use as a843

web browser utility, serving as an introduction to customizing
live system images.

844

$ mkdir tutorial2
$ cd tutorial2
$ lb config
$ echo "task-lxde-desktop iceweasel" >> config/package-lists/my.list.←↩

chroot
$ lb config

Our choice of LXDE for this example reflects our desire to845

provide a minimal desktop environment, since the focus of the
image is the single use we have in mind, the web browser. We
could go even further and provide a default configuration for the
web browser in config/includes.chroot/etc/iceweasel/-

profile/, or additional support packages for viewing various
kinds of web content, but we leave this as an exercise for the
reader.

Build the image, again as superuser, keeping a log as in ‹Tuto-846

rial 1›:

847

lb build 2>&1 | tee build.log

Again, verify the image is OK and test, as in ‹Tutorial 1›.848

18.4 Tutorial 3: A personalized image849

Use case: Create a project to build a personalized image,850

containing your favourite software to take with you on a USB
stick wherever you go, and evolving in successive revisions as
your needs and preferences change.

Since we will be changing our personalized image over a num-851

ber of revisions, and we want to track those changes, trying
things experimentally and possibly reverting them if things don't
work out, we will keep our configuration in the popular git ver-
sion control system. We will also use the best practice of au-
toconfiguration via auto scripts as described in ‹Managing a
configuration›.

18.4.1 First revision 852

853

$ mkdir -p tutorial3/auto
$ cp /usr/share/doc/live-build/examples/auto/* tutorial3/auto/
$ cd tutorial3

Edit auto/config to read as follows: 854

855

#!/bin/sh

lb config noauto \
--architectures i386 \
--linux-flavours 686-pae \
"${@}"

Perform lb config to generate the config tree, using the au- 856

to/config script you just created:

857

$ lb config

Now populate your local package list: 858

859

64

Live Systems Manual

$ echo "task-lxde-desktop iceweasel xchat" >> config/package-lists/my.←↩
list.chroot

First, --architectures i386 ensures that on our amd64 build860

system, we build a 32-bit version suitable for use on most
machines. Second, we use --linux-flavours 686-pae

because we don't anticipate using this image on much older
systems. Third, we have chosen the lxde task metapackage
to give us a minimal desktop. And finally, we have added two
initial favourite packages: iceweasel and xchat.

Now, build the image:861

862

lb build

Note that unlike in the first two tutorials, we no longer have863

to type 2>&1 |tee build.log as that is now included in au-

to/build.

Once you've tested the image (as in ‹Tutorial 1›) and are sat-864

isfied it works, it's time to initialize our git repository, adding
only the auto scripts we just created, and then make the first
commit:

865

$ git init
$ cp /usr/share/doc/live-build/examples/gitignore .gitignore
$ git add .
$ git commit -m "Initial import."

18.4.2 Second revision866

In this revision, we're going to clean up from the first build,867

add the vlc package to our configuration, rebuild, test and com-
mit.

The lb clean command will clean up all generated files from 868

the previous build except for the cache, which saves having to
re-download packages. This ensures that the subsequent lb
build will re-run all stages to regenerate the files from our new
configuration.

869

lb clean

Now append the vlc package to our local package list in 870

config/package-lists/my.list.chroot:

871

$ echo vlc >> config/package-lists/my.list.chroot

Build again: 872

873

lb build

Test, and when you're satisfied, commit the next revision: 874

875

$ git commit -a -m "Adding vlc media player."

Of course, more complicated changes to the configuration are 876

possible, perhaps adding files in subdirectories of config/.
When you commit new revisions, just take care not to hand
edit or commit the top-level files in config containing LB_*

variables, as these are build products, too, and are always

65

Live Systems Manual

cleaned up by lb clean and re-created with lb config via
their respective auto scripts.

We've come to the end of our tutorial series. While many more877

kinds of customization are possible, even just using the few fea-
tures explored in these simple examples, an almost infinite va-
riety of different images can be created. The remaining exam-
ples in this section cover several other use cases drawn from
the collected experiences of users of live systems.

18.5 A VNC Kiosk Client878

Use case: Create an image with live-build to boot directly to a879

VNC server.

Make a build directory and create an skeletal configuration in-880

side it, disabling recommends to make a minimal system. And
then create two initial package lists: the first one generated with
a script provided by live-build named Packages (see ‹Gener-
ated package lists›), and the second one including xorg, gdm3,
metacity and xvnc4viewer.

881

$ mkdir vnc-kiosk-client
$ cd vnc-kiosk-client
$ lb config -a i386 -k 686-pae --apt-recommends false
$ echo '! Packages Priority standard' > config/package-lists/standard.←↩

list.chroot
$ echo "xorg gdm3 metacity xvnc4viewer" > config/package-lists/my.list.←↩

chroot

As explained in ‹Tweaking APT to save space› you may need882

to re-add some recommended packages to make your image
work properly.

An easy way to list recommends is using apt-cache. For exam-883

ple:

884

$ apt-cache depends live-config live-boot

In this example we found out that we had to re-include several 885

packages recommended by live-config and live-boot: user-

setup to make autologin work and sudo as an essential pro-
gram to shutdown the system. Besides, it could be handy to
add live-tools to be able to copy the image to RAM and eject
to eventually eject the live medium. So:

886

$ echo "live-tools user-setup sudo eject" > config/package-lists/←↩
recommends.list.chroot

After that, create the directory /etc/skel in config/in- 887

cludes.chroot and put a custom .xsession in it for the default
user that will launch metacity and start xvncviewer, connecting
to port 5901 on a server at 192.168.1.2:

888

$ mkdir -p config/includes.chroot/etc/skel
$ cat > config/includes.chroot/etc/skel/.xsession << EOF
#!/bin/sh

/usr/bin/metacity &
/usr/bin/xvncviewer 192.168.1.2:1

exit
EOF

Build the image: 889

890

lb build

Enjoy. 891

66

Live Systems Manual

18.6 A base image for a 128MB USB key892

Use case: Create a default image with some components893

removed in order to fit on a 128MB USB key with a little space
left over to use as you see fit.

When optimizing an image to fit a certain media size, you need894

to understand the tradeoffs you are making between size and
functionality. In this example, we trim only so much as to make
room for additional material within a 128MB media size, but
without doing anything to destroy the integrity of the packages
contained within, such as the purging of locale data via the
localepurge package, or other such “intrusive” optimizations.
Of particular note, we use --debootstrap-options to create a
minimal system from scratch.

895

$ lb config -k 486 --apt-indices false --apt-recommends false --←↩
debootstrap-options "--variant=minbase" --firmware-chroot false --←↩
memtest none

To make the image work properly, we must re-add, at least,896

two recommended packages which are left out by the --

apt-recommends false option. See ‹Tweaking APT to save
space›

897

$ echo "user-setup sudo" > config/package-lists/recommends.list.chroot

Now, build the image in the usual way:898

899

lb build 2>&1 | tee build.log

On the author's system at the time of writing this, the above con-900

figuration produced a 77MB image. This compares favourably
with the 177MB image produced by the default configuration in
‹Tutorial 1›.

The biggest space-saver here, compared to building a default 901

image on an i386 architecture system, is to select only the 486

kernel flavour instead of the default -k “486 686-pae”. Leav-
ing off APT's indices with --apt-indices false also saves a
fair amount of space, the tradeoff being that you need to do an
apt-get update before using apt in the live system. Dropping
recommended packages with --apt-recommends false saves
some additional space, at the expense of omitting some pack-
ages you might otherwise expect to be there. --debootstrap-
options “--variant=minbase” bootstraps a minimal system
from the start. Not automatically including firmware packages
with --firmware-chroot false saves some space too. And
finally, --memtest none prevents the installation of a memory
tester.

Note: A minimal system can also be achieved using hooks, 902

like for example the stripped.hook.chroot hook found in /-

usr/share/doc/live-build/examples/hooks. It may shave off
additional small amounts of space and produce an image of
62MB. However, it does so by removal of documentation and
other files from packages installed on the system. This vio-
lates the integrity of those packages and that, as the comment
header warns, may have unforeseen consequences. That is
why using a minimal debootstrap is the recommended way of
achieving this goal.

18.7 A localized GNOME desktop and installer 903

Use case: Create a GNOME desktop image, localized for 904

Switzerland and including an installer.

We want to make an iso-hybrid image for i386 architecture us- 905

67

Live Systems Manual

ing our preferred desktop, in this case GNOME, containing all
of the same packages that would be installed by the standard
Debian installer for GNOME.

Our initial problem is the discovery of the names of the appropri-906

ate language tasks. Currently, live-build cannot help with this.
While we might get lucky and find this by trial-and-error, there
is a tool, grep-dctrl, which can be used to dig it out of the task
descriptions in tasksel-data, so to prepare, make sure you have
both of those things:

907

apt-get install dctrl-tools tasksel-data

Now we can search for the appropriate tasks, first with:908

909

$ grep-dctrl -FTest-lang de /usr/share/tasksel/descs/debian-tasks.desc ←↩
-sTask

Task: german

By this command, we discover the task is called, plainly910

enough, german. Now to find the related tasks:

911

$ grep-dctrl -FEnhances german /usr/share/tasksel/descs/debian-tasks.←↩
desc -sTask

Task: german-desktop
Task: german-kde-desktop

At boot time we will generate the de_CH.UTF-8 locale and se-912

lect the ch keyboard layout. Now let's put the pieces together.
Recalling from ‹Using metapackages› that task metapackages
are prefixed task-, we just specify these language boot param-
eters, then add standard priority packages and all our discov-
ered task metapackages to our package list as follows:

913

$ mkdir live-gnome-ch
$ cd live-gnome-ch
$ lb config \

-a i386 \
-k 486 \
--bootappend-live "boot=live components locales=de_CH.UTF-8 ←↩

keyboard-layouts=ch" \
--debian-installer live

$ echo '! Packages Priority standard' > config/package-lists/standard.←↩
list.chroot

$ echo task-gnome-desktop task-german task-german-desktop >> config/←↩
package-lists/desktop.list.chroot

$ echo debian-installer-launcher >> config/package-lists/installer.list←↩
.chroot

Note that we have included the debian-installer-launcher pack- 914

age to launch the installer from the live desktop, and have
also specified the 486 flavour kernel, as it is currently neces-
sary to make the installer and live system kernels match for the
launcher to work properly.

68

Live Systems Manual

Appendix915

69

Live Systems Manual

Style guide916

19. Style guide917

19.1 Guidelines for authors918

This section deals with some general considerations to be919

taken into account when writing technical documentation for
live-manual. They are divided into linguistic features and
recommended procedures.

Note: Authors should first read ‹Contributing to this docu-920

ment›

19.1.1 Linguistic features921

• Use plain English922

Keep in mind that a high percentage of your readers are not923

native speakers of English. So as a general rule try to use short,
meaningful sentences, followed by a full stop.

This does not mean that you have to use a simplistic, naive924

style. It is a suggestion to try to avoid, as much as possible,
complex subordinate sentences that make the text difficult to
understand for non-native speakers of English.

• Variety of English925

The most widely spread varieties of English are British and926

American so it is very likely that most authors will use either
one or the other. In a collaborative environment, the ideal vari-
ety would be “International English” but it is very difficult, not to
say impossible, to decide on which variety among all the exist-
ing ones, is the best to use.

We expect that different varieties may mix without creating mis-927

understandings but in general terms you should try to be coher-
ent and before deciding on using British, American or any other
English flavour at your discretion, please take a look at how
other people write and try to imitate them.

• Be balanced 928

Do not be biased. Avoid including references to ideologies 929

completely unrelated to live-manual. Technical writing should
be as neutral as possible. It is in the very nature of scientific
writing.

• Be politically correct 930

Try to avoid sexist language as much as possible. If you need 931

to make references to the third person singular preferably use
“they” rather than “he” or “she” or awkward inventions such as
“s/he”, “s(he)” and the like.

• Be concise 932

Go straight to the point and do not wander around aimlessly. 933

Give as much information as necessary but do not give more
information than necessary, this is to say, do not explain un-
necessary details. Your readers are intelligent. Presume some
previous knowledge on their part.

• Minimize translation work 934

Keep in mind that whatever you write will have to be translated 935

into several other languages. This implies that a number of peo-
ple will have to do an extra work if you add useless or redundant
information.

• Be coherent 936

As suggested before, it is almost impossible to standardize a 937

collaborative document into a perfectly unified whole. However,
every effort on your side to write in a coherent way with the rest
of the authors will be appreciated.

70

Live Systems Manual

• Be cohesive 938

Use as many text-forming devices as necessary to make your939

text cohesive and unambiguous. (Text-forming devices are lin-
guistic markers such as connectors).

• Be descriptive940

It is preferable to describe the point in one or several para-941

graphs than merely using a number of sentences in a typical
“changelog” style. Describe it! Your readers will appreciate
it.

• Dictionary942

Look up the meaning of words in a dictionary or encyclopedia943

if you do not know how to express certain concepts in English.
But keep in mind that a dictionary can either be your best friend
or can turn into your worst enemy if you do not know how to use
it correctly.

English has the largest vocabulary that exists (with over one944

million words). Many of these words are borrowings from other
languages. When looking up the meaning of words in a bilin-
gual dictionary the tendency of a non-native speaker of English
is to choose the one that sounds more similar in their mother
tongue. This often turns into an excessively formal discourse
which does not sound quite natural in English.

As a general rule, if a concept can be expressed using different945

synonyms, it is a good advice to choose the first word proposed
by the dictionary. If in doubt, choosing words of Germanic ori-
gin (Usually monosyllabic words) is often the right thing to do.
Be warned that these two techniques might produce a rather
informal discourse but at least your choice of words will be of
wide use and generally accepted.

Using a dictionary of collocations is recommended. They are946

extremely helpful when it comes to know which words usually
occur together.

Again it is a good practice to learn from the work of others. Us- 947

ing a search engine to check how other authors use certain
expressions may help a lot.

• False friends, idioms and other idiomatic expressions 948

Watch out for false friends. Nomatter how proficient you are in a 949

foreign language you cannot help falling from time to time in the
trap of the so called “false friends”, words that look similar in two
languages but whose meanings or uses might be completely
different.

Try to avoid idioms as much as possible. “Idioms” are ex- 950

pressions that may convey a completely different meaning from
what their individual words seem to mean. Sometimes, idioms
might be difficult to understand even for native speakers of En-
glish!

• Avoid slang, abbreviations, contractions... 951

Even though you are encouraged to use plain, everyday En- 952

glish, technical writing belongs to the formal register of the lan-
guage.

Try to avoid slang, unusual abbreviations that are difficult to un- 953

derstand and above all contractions that try to imitate the spo-
ken language. Not to mention typical irc and family friendly ex-
pressions.

19.1.2 Procedures 954

• Test before write 955

It is important that authors test their examples before adding 956

them to live-manual to ensure that everything works as de-
scribed. Testing on a clean chroot or VM can be a good starting
point. Besides, it would be ideal if the tests were then carried
out on different machines with different hardware to spot pos-
sible problems that may arise.

71

Live Systems Manual

• Examples957

When providing an example try to be as specific as you can.958

An example is, after all, just an example.

It is often better to use a line that only applies to a specific case959

than using abstractions that may confuse your readers. In this
case you can provide a brief explanation of the effects of the
proposed example.

There may be some exceptions when the example suggests960

using some potentially dangerous commands that, if misused,
may cause data loss or other similar undesirable effects. In this
case you should provide a thorough explanation of the possible
side effects.

• External links961

Links to external sites should only be used when the information962

on those sites is crucial when it comes to understanding a spe-
cial point. Even so, try to use links to external sites as sparsely
as possible. Internet links are likely to change from time to time
resulting in broken links and leaving your arguments in an in-
complete state.

Besides, people who read the manual offline will not have the963

chance to follow those links.

• Avoid branding and things that violate the license under which964

the manual is published

Try to avoid branding as much as possible. Keep in mind that965

other downstream projects might make use of the documenta-
tion you write. So you are complicating things for them if you
add certain specific material.

live-manual is licensed under the GNUGPL. This has a number966

of implications that apply to the distribution of the material (of
any kind, including copyrighted graphics or logos) that is pub-
lished with it.

• Write a first draft, revise, edit, improve, redo if necessary 967

- Brainstorm!. You need to organize your ideas first in a logical 968

sequence of events.

- Once you have somehow organized those ideas in your mind 969

write a first draft.

- Revise grammar, syntax and spelling. Keep in mind that the 970

proper names of the releases, such as jessie or sid , should
not be capitalized when referred to as code names. In order
to check the spelling you can run the “spell” target. i.e. make

spell

- Improve your statements and redo any part if necessary. 971

• Chapters 972

Use the conventional numbering system for chapters and sub- 973

titles. e.g. 1, 1.1, 1.1.1, 1.1.2 ... 1.2, 1.2.1, 1.2.2 ... 2, 2.1 ...
and so on. See markup below.

If you have to enumerate a series of steps or stages in your 974

description, you can also use ordinal numbers: First, second,
third ... or First, Then, After that, Finally ... Alternatively you
can use bulleted items.

• Markup 975

And last but not least, live-manual uses ‹SiSU› to process the 976

text files and produce a multiple format output. It is recom-
mended to take a look at ‹SiSU's manual› to get familiar with
its markup, or else type:

977

$ sisu --help markup

Here are some markup examples that may prove useful: 978

- For emphasis/bold text: 979

72

http://www.sisudoc.org/
http://www.sisudoc.org/sisu/en/html/sisu_manual/markup.html

Live Systems Manual

980

{foo} or !{foo}!

produces: foo or foo . Use it to emphasize certain key981

words.

- For italics:982

983

/{foo}/

produces: foo. Use them e.g. for the names of Debian pack-984

ages.

- For monospace:985

986

#{foo}#

produces: foo. Use it e.g. for the names of commands. And987

also to highlight some key words or things like paths.

- For code blocks:988

989

code{

$ foo
bar

}code

produces:990

991

$ foo
bar

Use code{ to open and }code to close the tags. It is important 992

to remember to leave a space at the beginning of each line of
code.

19.2 Guidelines for translators 993

This section deals with some general considerations to be 994

taken into account when translating the contents of live-
manual.

As a general recommendation, translators should have read 995

and understood the translation rules that apply to their specific
languages. Usually, translation groups and mailing lists provide
information on how to produce translated work that complies
with Debian quality standards.

Note: Translators should also read ‹Contributing to this docu- 996

ment›. In particular the section ‹Translation›

19.2.1 Translation hints 997

• Comments 998

The role of the translator is to convey as faithfully as possible 999

the meaning of words, sentences, paragraphs and texts as writ-
ten by the original authors into their target language.

So they should refrain from adding personal comments or extra 1000

bits of information of their own. If they want to add a comment
for other translators working on the same documents, they can
leave it in the space reserved for that. That is, the header of
the strings in the po files preceded by a number sign # . Most
graphical translation programs can automatically handle those
types of comments.

73

Live Systems Manual

• TN, Translator's Note1001

It is perfectly acceptable however, to include a word or an ex-1002

pression in brackets in the translated text if, and only if, that
makes the meaning of a difficult word or expression clearer to
the reader. Inside the brackets the translator should make evi-
dent that the addition was theirs using the abbreviation “TN” or
“Translator's Note”.

• Impersonal sentences1003

Documents written in English make an extensive use of the im-1004

personal form “you”. In some other languages that do not share
this characteristic, this might give the false impression that the
original texts are directly addressing the reader when they are
actually not doing so. Translators must be aware of that fact
and reflect it in their language as accurately as possible.

• False friends1005

The trap of “false friends” explained before especially applies1006

to translators. Double check the meaning of suspicious false
friends if in doubt.

• Markup1007

Translators working initially with pot files and later on with po1008

files will find many markup features in the strings. They can
translate the text anyway, as long as it is translatable, but it is
extremely important that they use exactly the same markup as
the original English version.

• Code blocks1009

Even though the code blocks are usually untranslatable, includ-1010

ing them in the translation is the only way to score a 100% com-
plete translation. And even though it means more work at first
because it might require the intervention of the translators if the
code changes, it is the best way, in the long run, to identify what

has already been translated and what has not when checking
the integrity of the .po files.

• Newlines 1011

The translated texts need to have the exact same newlines as 1012

the original texts. Be careful to press the “Enter” key or type if
they appear in the original files. These newlines often appear,
for instance, in the code blocks.

Make no mistake, this does not mean that the translated text 1013

needs to have the same length as the English version. That is
nearly impossible.

• Untranslatable strings 1014

Translators should never translate: 1015

- The code names of releases (which should be written in low- 1016

ercase)

- The names of programs 1017

- The commands given as examples 1018

- Metadata (often between colons :metadata:) 1019

- Links 1020

- Paths 1021

74

Live Systems Manual

SiSU Metadata, document information

Title: Live Systems Manual

Creator: Live Systems Project <debian-live@lists.debian.org>

Rights: Copyright: Copyright (C) 2006-2014 Live Systems Project

License: This program is free software: you can redistribute it and/or modify it under

the terms of the GNU General Public License as published by the Free Software

Foundation, either version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT

ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or

FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for

more details.

You should have received a copy of the GNU General Public License along

with this program. If not, see ‹http://www.gnu.org/licenses/›.

The complete text of the GNU General Public License can be found in /usr/-

share/common-licenses/GPL-3 file.

Publisher: Live Systems Project <debian-live@lists.debian.org>

Date: 2014-08-27

Version Information

Sourcefile: live-manual.ssm.sst
Filetype: SiSU text 2.0,

Source Digest: SHA256(live-manual.ssm.sst)=8b4d7ac7bd37ad3e372531c4-
17ee8e53570af66a11d38516df100033bf702362

Generated

Document (ao) last generated: 2014-08-30 22:08:32 +0000

Generated by: SiSU 5.6.3 of 2014w34/5 (2014-08-29)

Ruby version: ruby 1.9.3p194 (2012-04-20 revision 35410) [x86_64-linux]

75

http://www.gnu.org/licenses/

	About
	About this manual
	1. About this manual
	1.1 For the impatient
	1.2 Terms
	1.3 Authors
	1.4 Contributing to this document
	1.4.1 Applying changes
	1.4.2 Translation

	About the Live Systems Project
	2. About the Live Systems Project
	2.1 Motivation
	2.1.1 What is wrong with current live systems
	2.1.2 Why create our own live system?

	2.2 Philosophy
	2.2.1 Only unchanged packages from Debian “main”
	2.2.2 No package configuration of the live system

	2.3 Contact

	User
	Installation
	3. Installation
	3.1 Requirements
	3.2 Installing live-build
	3.2.1 From the Debian repository
	3.2.2 From source
	3.2.3 From `snapshots'

	3.3 Installing live-boot and live-config
	3.3.1 From the Debian repository
	3.3.2 From source
	3.3.3 From `snapshots'

	The basics
	4. The basics
	4.1 What is a live system?
	4.2 Downloading prebuilt images
	4.3 Using the web live image builder
	4.3.1 Web builder usage and caveats

	4.4 First steps: building an ISO hybrid image
	4.5 Using an ISO hybrid live image
	4.5.1 Burning an ISO image to a physical medium
	4.5.2 Copying an ISO hybrid image to a USB stick
	4.5.3 Using the space left on a USB stick
	4.5.4 Booting the live medium

	4.6 Using a virtual machine for testing
	4.6.1 Testing an ISO image with QEMU
	4.6.2 Testing an ISO image with VirtualBox

	4.7 Building and using an HDD image
	4.8 Building a netboot image
	4.8.1 DHCP server
	4.8.2 TFTP server
	4.8.3 NFS server
	4.8.4 Netboot testing HowTo
	4.8.5 Qemu

	4.9 Webbooting
	4.9.1 Getting the webboot files
	4.9.2 Booting webboot images

	Overview of tools
	5. Overview of tools
	5.1 The live-build package
	5.1.1 The lb config command
	5.1.2 The lb build command
	5.1.3 The lb clean command

	5.2 The live-boot package
	5.3 The live-config package

	Managing a configuration
	6. Managing a configuration
	6.1 Dealing with configuration changes
	6.1.1 Why use auto scripts? What do they do?
	6.1.2 Use example auto scripts

	6.2 Clone a configuration published via Git

	Customizing contents
	7. Customization overview
	7.1 Build time vs. boot time configuration
	7.2 Stages of the build
	7.3 Supplement lb config with files
	7.4 Customization tasks

	Customizing package installation
	8. Customizing package installation
	8.1 Package sources
	8.1.1 Distribution, archive areas and mode
	8.1.2 Distribution mirrors
	8.1.3 Distribution mirrors used at build time
	8.1.4 Distribution mirrors used at run time
	8.1.5 Additional repositories

	8.2 Choosing packages to install
	8.2.1 Package lists
	8.2.2 Using metapackages
	8.2.3 Local package lists
	8.2.4 Local binary package lists
	8.2.5 Generated package lists
	8.2.6 Using conditionals inside package lists
	8.2.7 Removing packages at install time
	8.2.8 Desktop and language tasks
	8.2.9 Kernel flavour and version
	8.2.10 Custom kernels

	8.3 Installing modified or third-party packages
	8.3.1 Using packages.chroot to install custom packages
	8.3.2 Using an APT repository to install custom packages
	8.3.3 Custom packages and APT

	8.4 Configuring APT at build time
	8.4.1 Choosing apt or aptitude
	8.4.2 Using a proxy with APT
	8.4.3 Tweaking APT to save space
	8.4.4 Passing options to apt or aptitude
	8.4.5 APT pinning

	Customizing contents
	9. Customizing contents
	9.1 Includes
	9.1.1 Live/chroot local includes
	9.1.2 Binary local includes

	9.2 Hooks
	9.2.1 Live/chroot local hooks
	9.2.2 Boot-time hooks
	9.2.3 Binary local hooks

	9.3 Preseeding Debconf questions

	Customizing run time behaviours
	10. Customizing run time behaviours
	10.1 Customizing the live user
	10.2 Customizing locale and language
	10.3 Persistence
	10.3.1 The persistence.conf file
	10.3.2 Using more than one persistence store

	10.4 Using persistence with encryption

	Customizing the binary image
	11. Customizing the binary image
	11.1 Bootloaders
	11.2 ISO metadata

	Customizing Debian Installer
	12. Customizing Debian Installer
	12.1 Types of Debian Installer
	12.2 Customizing Debian Installer by preseeding
	12.3 Customizing Debian Installer content

	Project
	Contributing to the project
	13. Contributing to the project
	13.1 Making changes

	Reporting bugs
	14. Reporting bugs
	14.1 Known issues
	14.2 Rebuild from scratch
	14.3 Use up-to-date packages
	14.4 Collect information
	14.5 Isolate the failing case if possible
	14.6 Use the correct package to report the bug against
	14.6.1 At build time while bootstrapping
	14.6.2 At build time while installing packages
	14.6.3 At boot time
	14.6.4 At run time

	14.7 Do the research
	14.8 Where to report bugs

	Coding Style
	15. Coding Style
	15.1 Compatibility
	15.2 Indenting
	15.3 Wrapping
	15.4 Variables
	15.5 Miscellaneous

	Procedures
	16. Procedures
	16.1 Major Releases
	16.2 Point Releases
	16.2.1 Last Point Release of a Debian Release
	16.2.2 Point release announcement template

	Git repositories
	17. Git repositories
	17.1 Handling multiple repositories

	Examples
	Examples
	18. Examples
	18.1 Using the examples
	18.2 Tutorial 1: A default image
	18.3 Tutorial 2: A web browser utility
	18.4 Tutorial 3: A personalized image
	18.4.1 First revision
	18.4.2 Second revision

	18.5 A VNC Kiosk Client
	18.6 A base image for a 128MB USB key
	18.7 A localized GNOME desktop and installer

	Appendix
	Style guide
	19. Style guide
	19.1 Guidelines for authors
	19.1.1 Linguistic features
	19.1.2 Procedures

	19.2 Guidelines for translators
	19.2.1 Translation hints

	SiSU Metadata, document information

